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Abstract

Multiple beam interference of light in a wedge is considered when the wedge is

filled with an absorbing medium.The aim is to examine a method that may give

values of both the real and the imaginary parts of the refractive index of the

absorbing medium. We propose here a method to determine these quantities

from simple techniques like fringe counting and interferometry, by using as the

incident wave either a single Gaussian beam or two parallel Gaussian beams.

1. Introduction

Intensity patterns as produced by multiple reflections in a
transparent plane wedge is a subject of interest in various
contexts of optics [1,2]. The need for considering a wedge is
in fact two fold. Firstly in making large surfaces, errors of
the order of 10�3 radians are difficult to avoid and secondly
by using a wedge one can increase the dispersive properties
of the system which improves the accuracy with which the
real and imaginary parts of the refractive index can be
measured. In our present analysis the refractive and
absorptive properties of the dielectric medium are
expressed by a complex refractive index. The calculation
of the intensity pattern requires the proper evaluation of
the path lengths of the different rays that emerge from the
wedge such that one can find the electric field, by taking
into account the proper amplitude and phase for every
emergent ray [3–5]. The situation generally encountered is
shown in Fig. 1. The intensity pattern is very sensitive to
the phases of the different rays and therefore a proper
calculation of the path lengths is necessary. Calculation of
this path length also helps to find the amplitude of the wave
as it emerges from the wedge, by simply putting an
attenuation factor in the different rays, consistent with the
path lengths that they have travelled.
The aim here is to show that determination of both the

real and imaginary parts of the refractive index is possible
from simple techniques like fringe counting and intensity
pattern matching for multiple beam interferometry. As a
test case we consider the optical properties of a material
close to its absorbing frequency, i.e., where the imaginary
part of the refactive index dominates. It is seen that
multiple reflections of a single beam produce a flattened
intensity distribution from which it is diffcult to extract the
real part of the refractive index. However, an interfero-
metry experiment with two incident beams is suggested to
determine the real and imaginary parts of the refractive
index. Both the beams are allowed to have multiple
reflections in the slab and the interference is allowed to
take place between all the emergent beams from the slab.

This method gives good results even when the absorption
coefficient is high. The analysis of the method begins with
an analysis of the intensity distribution for rays emerging
from a wedge shaped thin film, when several beams are
incident on the wedge and are allowed to have multiple
reflections in the wedge.

We hope to use this method in surface profiling.

2. Theory

The theoretical expressions for the intensity are obtained
from the calculational methods given recently by the
present author [6], with the addition that for every
emergent ray the amplitude has to be calculated by
incorporating an appropriate attenuation factor, consistent
with the absorption coefficient as also the path length of
the respective rays. We reproduce the main intensity
expression here for completeness and clarity in the
subsequent discussions.

We refer to Fig. 1 and consider a ray incident at A. For
the first emergent ray, the phase is given by

 0ð Þ ¼ 2p�=l½�1 sin �1 þ �2 sin �=cos �þ �
0ð Þ� ð1Þ

and it emerges from the point

x 0; �ð Þ ¼ � cos � 0= cos �þ � 0ð Þ ð2Þ

The angle � 0 satisfies Snell’s law

�1 sin � ¼ �2 sin �
0: ð3Þ

The second beam travels an extra path CDE � �1 �ð Þ

¼ 4� sin � cos� cos � 0=½cos 2�þ cos 2� 0 þ 4�ð Þ� ð4Þ

and emerges from

x 1; �ð Þ ¼ � cos � 0=cos 3�þ � 0ð Þ ð5Þ

Similar calculations based on simple geometry of triangles
show that the pth ray emerges from

x p; �ð Þ ¼ � cos � 0=cos½ 2pþ 1ð Þ�þ � 0� ð6Þ

after travelling a total path L p; �ð Þ in the wedge such that

�l p; �ð Þ ¼ L pþ 1; �ð Þ � L p; �ð Þ

¼ 4� sin � cos� cos � 0=½cos 2�þ cos 2� 0 þ 4p�ð Þ� ð7Þ
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It is thus clear that for the pth emergent ray the total path
length in the wedge is found over the entire zig-zag path
and is thus found from its sum.

L p; �ð Þ ¼
Xp
k¼1

�1 kð Þ

¼ �l �ð Þ þ

Z p

k¼1

�1 k; �ð Þ dk ð8Þ

where we are using an Euler–Maclaurin summation
formula, giving

L p; �ð Þ ¼ �l �ð Þ þ p � cos � 0=�ð Þ

� ln½ 1þ cos 2�þ sin 2� tan 2p�þ � 0ð Þð Þ

� 1þ cos 2�� sin 2� tan 2�þ � 0ð Þð Þ=

� 1þ cos 2�þ sin 2� tan 2�þ � 0ð Þð Þ

� 1þ cos 2�� sin 2� tan 2�þ � 0ð Þð Þ� ð9Þ

This sum given in (9) is a good approximation, whenever
the terms in the sum do not oscillate rapidly with p; i.e.,
when cos��1 and cos�p �1: Thus, every emergent beam
arrives at p; with a phase,

 p; �ð Þ ¼  �; 0ð Þ þ 2p=lð ÞL p; �ð Þ�2r� 2p=lð Þx p; �ð Þ sin ��1

¼ 2p=lð Þ�� p; �ð Þ ð10Þ

in the limit of Fraunhofer diffraction.
Here �2r is the real part of the refractive index of

medium 2. This part gives rise to only the phase shift. The
imaginary part of the refractive index of the wedge gives
rise to attenuation, so that the amplitude of the pth
emergent ray is r pe��

2iL p;�ð Þ : We further consider two rays
incident at � ¼ �c1 and �c2 respectively. The waves from
each of these two rays get divided on multiple reflection.
We consider the incident beam to be a Gaussian,

coherent one, with an electric field distribution with � being

P �ð Þ ¼ 1=
p
p�

� �
exp � �� �cð Þ

2=�2
� �

ð11Þ

The net electric field contribution is, on adding over all �’s
calculated as follows.

We designate as E1 and E2 the first emergent rays: They
add up to give a field,

E1 þ E2 ¼

Z þ1

�1

exp i �1 � �c1 þ �c1ð Þ aþ ibð Þð Þ

� expð� �1 � �c1ð Þ
2=�2d�1Þ

þ

Z þ1

�1

exp i �1 � �c1 þ �c1ð Þ aþ ibð Þð Þ

� expð� �1 � �c1ð Þ
2=�2

2 d�2Þ: ð12Þ

In a similar way, the waves from the rest of the emergent
rays, owing to multiple reflections contribute,

E3 þ E4 ¼
X1
p¼1

½exp ��pð Þ

Z þ1

�1

� exp i �1 � �c1 þ �c1ð Þ cþ idð Þð Þ

� expð� �1 � �c1ð Þ
2=�2

1d�1Þ

þ exp ��pð Þ

Z þ1

�1

exp i �1 � �c1 þ �c1ð Þ cþ idð Þð Þ

� expð� �1 � �c1ð Þ
2=�2

2 d�2Þ�: ð13Þ

Above,

a ¼ ½�1 sin �1 þ �2 sin �=cos �þ �
0ð Þ

� �3 cos �
0 sin �=cos �þ � 0ð Þ�2p=l;

b ¼ �2i sin �=cos �þ �
0ð Þ;

c ¼ 2p=lð Þ½�1 sin �1 þ �2r sin �=cos �þ �
0ð Þ�

þ �2 f pð Þ � �3 f1 pð Þ;

d ¼ �2i f pð Þ: ð14Þ

The total field is thus Etot ¼ E1 þ E2 þ E3 þ E4; which on
integration gives the complex field

Etot ¼
p
p

"
exp i a� bð Þ�c1ð Þ exp aþ ibð Þ

2�2
1=4

� �
�1

þ exp i a� bð Þ�c2ð Þ exp aþ ibð Þ
2�2

2=4
� �

�2

þ
X1
p¼1

exp ��pð Þ exp ic� dð Þ�c1ð Þ

� exp cþ idð Þ
2�2

1=4
� �

�1

þ
X1
p¼1

exp ��pð Þ exp ic� dð Þ�c2ð Þ

� exp cþ idð Þ
2�2

2=4
� �

�2

#
ð15Þ

Fig. 1. Sketch of the optics of the system. All calculations and

computations are based on this geometry.
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as expected considering the Gaussian nature of the
integrals. The intensity at any point is given by

I �; �; �1; �ð Þ ¼ jEtot �; �; �1; �ð Þj2: ð16Þ

The Gaussian factor exp � 2p�� p; �ð Þ=2lð Þ
2

� �
tends to

center every term in the sum around the values of �; such
that 2p�� p; �ð Þ=2lð Þ

2
� 1; as expected due to diffraction

for any finite �: Thus by making � sufficiently small, these
term may have considerable sweep over �; as in the present
case, where we have chosen � � 1 m for l ¼ 6328 Å. It is to
be understood that the Gaussian factor in (15) arises
because we have considered a Gaussian beam. For other
kinds of beams, however, this Gaussian factor has to be
replaced by an appropriate factor consistent with the
amplitude and phase distribution in the incident beam. It
can be seen that the p ¼ 0 term is centered around
	 0ð Þ � 2p=lð Þx0 sin � ¼ 0; which is exactly the geometrical
optics formula for the emergent ray �; as given by the well
known formula for a prism. However, due to the finite size
of the Gaussian beam, there is a spread of intensity around
this central ray, the central ray direction being given by the
prism formula. For different p values, the Gaussian factors
are centered around � p; �ð Þ ¼ 0; i.e., give maxima in
different � directions, implying that the different emergent
rays from the wedge are not parallel to each other if � be
non zero.
The factors exp i	 p; �cð Þð Þ in the different terms in the

sum are the ‘‘phase terms’’ which give rise to interference
terms in (14). The interference results for thin films
d � 50 mm and low wedge angles, � � 0:01 radians, are
now studied, with the aid of Eq. (14). It is to be noted that
the formula becomes inaccurate for � > 0:03 radians as the
summation given by the Euler–Mclaurin expression (8,9)
then requires a larger number of terms to be added, a step
that will be taken up in a future communication.

3. Results and discussion

The issues involved here are a combination of both
diffraction and interference of light. The width � of the
beam defines the width of the diffraction profile, being
given by �� � l=� while the separation between the
fringes due to interference is nearly �� � l=d: Thus the
number of interference fringes that can be accommodated
in the diffraction envelope is n � ��=�� ¼ d=� (apart from
factors that depend on the angle of incidence), so it is
essential that in order that the fringe count method be
effective n 	 4: This puts the limitations on the application
of the method due to limitations of obtaining apertures
with sufficiently small �: In absence of the wedge, the
interference should be exactly as that of a Fabry–Perot, if
the wedge angle is absent and if the light is allowed to
arrive at all possible angles, i.e. if � and � are both very
small.

Fig. 2. Effect of absorption on the intensity of light. This figure shows a

plot of the scattering angle vs. intensity. The four plots give intensity

profiles for different refractive indices.

Refractive index ¼ 1:0þ 1 
 10�5 i
� �

:
Refractive index ¼ 1:0þ 1 
 10�4 i

� �
:

Refractive index ¼ 1:0þ 1 
 10�3 i
� �

:

Refractive index ¼ 1:0þ 1 
 10�2 i
� �

:

Fig. 3. Plot of the wedge thickness vs. the logarithm of the maximum

value of the intensity at a given value of the imaginary part of the

refractive index. The imaginary part of the refractive index varies from

1 
 10�5 to 10�2 and the real part is kept constant at 1.1.

Fig 4. Plot of omega vs. the real part of the refractive index. The relation

between omega and the refractive index is given in the text.
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The effect of absorption on the intensity of the light is
shown in Figs. 2 and 3. In Fig. 2 we see that for a fixed
wedge angle and angle of incidence, the intensity decreases
as the absorption increases, as is expected. We also see that
as we go from Figs. 2(a) to (d) (which is in the order of
increasing absorption) the number of fringes also
decreases, forcing us to use two incident beams for getting
useful information at high absorption. Figure 3 also shows
the decrease of the intensity maximum as the absorption
increases.
The determination of the real and imaginary parts of the

refractive index completely characterises the given system.
The real part decides the phase of the light beam as it
travels in the medium and the imaginary part determines
the attenuation of the amplitude of the wave.
The role of the imaginary part of the refractive index is

shown in Fig. 3. The real part of the refractive index is kept
constant and the imaginary part is varied over a wide range
for different thicknesses of the wedge. The plot of the
wedge thickness verses the log of the intensity maximum is
a straight line for all values of the refractive index
(imaginary). These straight lines for a given wedge can be
calibrated to give an accurate value of the imaginary part
of the refractive index.
Determination of the real part of the refractive index

involves fringe counting with the incidence of two beams at
slightly different distances from the apex of the wedge. This
is because when a single beam is used at high absorption
values, only a broad peak is obtained and we can not
extract any information.
The computations in Figs. 4 and 5 were carried out using

the following relations. As mentioned earlier the computa-
tions are carried out in a small range where the absorption
is optimised.

�r ¼ n0 þ ð4pe2=n0m! 0
sÞððNfsÞð!s � !Þ=ð4ð!

0
s � !Þ

2
þ 
2s ÞÞ;

�i ¼ 1==�r½ð2pe2=n0m! 0
sÞððNfsÞ
s=4ð!

0
s � !Þ

2
þ 
2s Þ�

where

�r ¼ real part of the refractive index;

�i ¼ imaginary part of the refractive index;

!s ¼ absorption frequency ¼ 7:4 
 1015 s�1;


s ¼ 3:3 
 1011 s�1;

Nfs ¼ 9:2 
 1016 cm�3;

e ¼ electronic charge ¼ 4:80325 
 10�10 esu;

m ¼ electronic mass ¼ 9:10956 
 10�28 gms:

Figures 4 and 5 show a plot of ! vs. the real part of the
refractive index and ! vs the fringe count after a reference
point. In this case we have used as fringe count the number
of intensity maxima that appear after the reference point.
We note from Figs. 4 and 5 that the fringe count vs. ! has a
shape similar to the curve which gives the variation of the
real part of the refractive index with the frequency ! of the
incident light. This shows that fringe count helps us to
obtain an idea about the behaviour of the real refractive
index and can get an approximate estimate of the real
refractive index. An accurate estimation of the real
refractive index would involve fitting the intensity values
to Eq. (16).

The work described here also has direct relevance to
scattering by absorbing flakes and follows the analysis
presented in Ref. [7]. It is to be noted that our analysis can
be applied to flakes of fairly large size so that the cross
sectional area of the flake is greater than the cross sectional
area of the incident beam. This approximation allows one
to neglect the scattering at the edges [8,9]. We plan to
extend the above analysis to incorporate the effct of the
edges and the effect of roughness on the intensity pattern of
the transmitted light. As a first approximation, the latter
can be admitted by choosing a suitable distribution and
considering its autocorrelation. Such an averaging will
smear out the intensity distribution, given in Eqs. (15) and
(16). However, observations conducted at multiple wave-
lengths, as suggested in Ref. [10], are likely to reveal the
parameters of the system.
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Fig. 5. Plot of omega vs. the fringe count after a reference point. The

relation between omega and refractive index is given in the text.
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