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Abstract

The present paper defines ‘‘covariant ether theories’’ as all space-time theories

that are alternative to special relativity theory (SRT), but nevertheless satisfy

the general relativity principle. A general analysis of the properties of

admissible space-time transformations shows that the number of such

‘‘covariant ether theories’’ is infinite, and that all these theories are

indistinguishable from SRT with all experiments in space-time physics reported

to date. Some new theoretical and experimental approaches for unambiguous

verification of SRT are discussed. A class of phenomena for which SRT and

covariant ether theories (CET’s) give different predictions is identified. It has

been concluded, that under modern development of experimental technique a

crucial choice between SRT and CET’s can be made by means of Mössbauer

spectroscopy.

1. Introduction

Modern physics accepts two relativity principles: the special
Einstein’s relativity principle (ERP) asserting that funda-
mental physical equations do not change (they are form-
invariant) under transformations between inertial reference
frames in an empty space, and the general relativity principle
(GRP) stating that fundamental physical equations do not
change their form (they are covariant) under transforma-
tions between any frames of references. (Strictly speaking,
the GRP requires a covariance of physical equations with
respect to ‘‘admissible’’ space-time transformations, which
keep the requirements g00 > 0; g��dx

adx� < 0; g is the
metric tensor, and �; � ¼ 1 . . . 3Þ: The GRP is one of the
deepest principles of physics and it means that any
phenomenon can be described from any reference frame
[1]. Thus, it does not require any experimental test. The GRP
constitutes one of the corner stones of modern knowledge,
and we strongly believe in its validity.
During a long time there was a widely spread opinion

that ERP is a direct consequence of GRP in case of inertial
motion in an empty space. If it actually was so, there would
be no meaning to test ERP experimentally. Indeed, in such
a case an experimental test of ERP would mean
simultaneously a test of GRP, which seems to be senseless.
However, ERP is not, in general, a consequence of GRP; it
represents an independent physical assumption. Only in
case of pseudo-Euclidean geometry of an empty space-time
(that ERP requires) we get a form-invariance of physical
equations with respect to the Lorentz transforms as a
special inference of the covariance principle. At the same
time, from a viewpoint of formal logic we are free to
suppose a curvilinear geometry for an empty space-time in
arbitrary inertial reference frame, with ‘‘admissible’’
transformations between different inertial frames. Neglect-

ing the question about the compatibility of such a theory
with the available experimental facts, one may nevertheless
state that this theory would be in contradiction with ERP,
but in agreement with GRP. Moreover, recent decades
have witnessed the development of ether theories of such a
kind, and they turned out to be indistinguishable from SRT
in terms of experiments gathered up to date [1–15]. On the
other hand, for many years such covariant ether theories
(CETs) were often considered as pure mathematical games,
even as ‘‘ether formulations of relativity’’ [8], which do not
predict really observable non-relativistic phenomena.

For a better analysis of CET’s, the present paper
develops a new approach based on the difference between
‘‘physical’’ and ‘‘measured’’ values (and their transforma-
tion rules) in a hypothetical curvilinear geometry of empty
space-time. This approach identifies a class of phenomena
for which SRT and covariant ether theories give unam-
biguously different predictions, and suggests new experi-
ments for qualitatively new tests of SRT.

2. Geometries of empty space-time

It is known that SRT establishes a pseudo-Euclidean
geometry for empty physical space-time. Thus, any
alternative theories of empty space-time should assume
flat curvilinear geometry in arbitrary inertial reference
frames. This section gives some remarks about
pseudo-Euclidean and alternative geometries of empty
space-time.

In the analysis of pseudo-Euclidean and curvilinear
geometries of space-time, there is an essential methodolo-
gical feature that has to be taken into account. Although
this feature was stressed many years ago by Reichenbach
(e.g., [16]), present ether theories do not take it into
account explicitly.

It may be natural to believe that in any inertial reference
frame we are able to construct a method for measurement
of space and time intervals such that the result of
measurement directly gives the physical magnitude of the
corresponding interval. But strictly speaking, this is a
property exclusive to pseudo-Euclidean geometry. Only in
this kind of geometry can we omit a distinction between
measured and physical space-time four-vectors [11,13,14].
That is, in general we have measured xex and physical xph
four-vectors, and only in pseudo-Euclidean geometry do
we have

xph ¼ xex ¼ xL;

where xL is the Minkowskian four-vector, subjected to the
Lorentz transformation L between two arbitrary inertial
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frames K and K0:

xLi ¼ Li jx
0j
L; i; j ¼ 0 . . . 3: ð1Þ

The essential property of any hypothetical curvilinear
geometry of empty space-time is the difference between
measured and physical space-time four-vectors in arbitrary
inertial reference frames: xph 6¼ xex: The necessity to
distinguish the measured and physical four-vectors can be
easily demonstrated with the Fitzgerald–Lorentz contrac-
tion hypothesis, which was first invoked to explain the null
result of the Michelson–Morley experiment. According to
this hypothesis, if a rod initially at rest in the hypothetical
‘‘absolute’’ frame has the length l, then under motion at a
constant ‘‘absolute’’ speed v along its axis, the length of the
rod becomes l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
: However, due to proportional

contraction of the unit scale in an attached inertial
reference frame, an experimenter in this frame measures
the same length l as in the case v ¼ 0 : Fitzgerald-Lorentz
contraction is not observable. Thus, we see that the length
of the rod in physical space-time is lph ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
; while

the measured length is equal to lex ¼ l; and lph 6¼ lex:
One can easy demonstrate that the same conclusion is

valid for time intervals in any curvilinear geometry of an
empty space-time: tph 6¼ tex: Thus, the four-vectors in
physical space-time (hereinafter ‘physical four-vectors’)
are not in general equal to the four-vectors, whose
components are constituted from corresponding experi-
mentally measured space and time intervals (hereinafter
‘‘measured four-vectors’’). Hence, in any alternative to
SRT theory we have to separately derive the transforma-
tion rules for both physical and measured four-vectors.
Further, among curvilinear geometries, where we

develop a space-time ether theory, a physical meaning
can be prescribed only to geometries that maintain space-
time homogeneity, called ‘‘oblique-angled geometries’’.
Some essential properties of these geometries are consid-
ered in the next section.

3. From pseudo-Euclidean to oblique-angled geometry

Now let us formally construct an oblique-angled geometry
by means of a transformation B from pseudo-Euclidean
geometry:

ðxNphÞi ¼ Bijðx
E
phÞ

j; ð2Þ

where the coefficients Bi j are some constant values and the
upper superscripts E and N signify the pseudo-Euclidean
and new oblique-angled geometry, respectively.
As shown above, in a non-Euclidean geometry the

physical xNph and measured xNex space-time four-vectors are
not in general equal to each other. Hence, a corresponding
transformation from pseudo-Euclidean to oblique-angled
geometry for xex should be written as

ðxNexÞi ¼ Ci jðx
E
exÞ

j; ð3Þ

where, in general, the matrix C differs from the matrix B in
(2), but obviously depends on B.
In this connection one may ask the following question:

what should be the form of matrix B in order to provide the

equality C ¼ E; where E is the 4� 4 identity matrix? In this
particular case we will have ðxNexÞi ¼ ðxEexÞi; and an
experimenter in the oblique-angled geometry will fail to
detect a deflection of his geometry from pseudo-Euclidean.

In order to answer this question, let us introduce the
conventional measuring methods in space-time: the use of a
‘‘unit scale’’ for measurement of length, the use of
‘‘standard clocks’’ for measurement of time, and Einstein’s
method for synchronization of distant clocks. Then the
magnitude of the measured length ðxNexÞ

� in physical space-
time xNph is equal to the ratio ððxNphÞ

�=ðxNphuÞ
�
Þ; where ðxNphuÞ

�

is the unit scale in the oblique-angled space-time (herein-
after the Greek subscripts correspond to three-dimensional
space, � ¼ 1; 2; 3).

Now let us write a relationship between space compo-
nents of xNph and four-vector xEph :

ðxNphÞ� ¼ B�jðx
E
phÞ

j ¼ B�0ðx
E
phÞ

0
þ B��ðx

E
phÞ

�: ð4Þ

For unit scale ðxNphuÞ� in physical space-time we can write
the similar relation:

ðxNphuÞ� ¼ B�0ðx
E
phÞ

0
þ B��ðx

E
phuÞ

�; ð5Þ

where ðxEphuÞ
� is the corresponding unit scale in Euclidean

space. Dividing (4) by (5), one obtains:

ðxNphÞ�

ðxNphuÞ�
¼

B�0ðx
E
phÞ

0
þ B��ðx

E
phÞ

�

B�0ðx
E
phÞ

0
þ B��ðx

E
phuÞ

�
: ð6Þ

This expression allows further transformation in the
particular case B�0 ¼ 0; taking account of the obvious
equality for Euclidean space

ðxEphÞ
�=ðxEphÞ

�
¼ ðxEphuÞ

�=ðxEphuÞ
�:

Hence,

ðxNphÞ�

ðxNphuÞ�
¼

B��ðx
E
phÞ

�

ðxEphuÞ
� B�� þ 1=ðxEphuÞ

�
� � P

�6¼�

B��ðx
E
phuÞ

�

" #

¼
B��ðx

E
phÞ

�

ðxEphuÞ
� B�� þ 1=ðxEphÞ

�
� � P

�6¼�

B��ðx
E
phÞ

�

" #

¼
ðxEphÞ�ðB��ðx

E
phÞ

�
Þ

ðxEphuÞ�ðB��ðx
E
phÞ

�
Þ
¼

ðxEphÞ�

ðxEphuÞ�
:

ð7Þ

Equality (7) means that the measured magnitudes ðxNexÞ� in
xNph coordinates coincide with the measured magnitudes
ðxEexÞ� in xEph � xL coordinates, i.e.,

ðxNexÞ� ¼ ðxEexÞ� ¼ ðxLÞ� ð8Þ

under the condition B�0 ¼ 0 adopted for the transforma-
tion (2). Physically, this result signifies that the distortion
of the length x� being induced by the transformation from
pseudo-Euclidean to oblique-angled geometry is not
detectable experimentally under B�0 ¼ 0 because of pro-
portional distortion of the ‘‘unit scale’’ x�u:
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Further, let us write a relationship between the time
components of the four-vectors xNph and xEph:

ðxNphÞ0 ¼ B00ðx
E
phÞ

0
þ B0�ðx

E
phÞ

�: ð9Þ

For two events at a fixed spatial point ððxEphÞ
�
¼ 0Þ

ðxNphÞ0 ¼ B00ðx
E
phÞ

0: ð10Þ

Hence, the coefficient B00 describes the change of clock rate
at a fixed spatial point under the transformation from
pseudo-Euclidean to oblique-angled geometry. Such a
change takes place for both a standard clock and a
physical time interval. Therefore, the measured time
interval at a fixed spatial point is

ðxNexÞ0 ¼
1

B00
ðxNphÞ0: ð11Þ

For time intervals at two different spatial points separated
by the distance ðxNphÞ�; one should write

ðxNexÞ0 ¼
1

B00
ðxNphÞ0 þ�ðxNphÞ0

h i
; ð12Þ

where �ðxNphÞ0 is the error of synchronization of clocks
separated by the distance ðxNphÞ� in oblique-angled space-
time. The value of �ðxNphÞ0 can be found from the equality

ðxNphÞ02 ¼ ðxNphÞ01=2 ð13Þ

(Einstein’s method of clocks synchronization), where ðxNphÞ01
is the time for light propagation from the first clock Cl1 (at
the origin of coordinates) to the second clock Cl2 (at the
point ðxNphÞ�Þ and back according to Cl1; while ðx

N
phÞ02 is the

indication of Cl2 at the moment of arrival of the light pulse.
In oblique-angled geometry the propagation time of light
from Cl1 to Cl2 ðxNphÞ0þ is not equal, in general, to the
propagation time in the reverse direction ðxNphÞ0�: Hence, an
implementation of the equality (13) is possible only in the
case where the readings of both clocks at the initial moment
of time differ by the value �ðxNphÞ0; and

ðxNphÞ01 ¼
1

B00
ðxNphÞ0þ þ ðxNphÞ0�

h i
;

ðxNphÞ02 ¼
1

B00
ðxNphÞ0þ þ�ðxNphÞ0

h i
: ð14Þ

Hence, with account of Eq. (13) we obtain:

�ðxNphÞ0 ¼
1

2
ðxNphÞ0� � ðxNphÞ0þ

h i
: ð15Þ

Expressions for ðxNphÞ0þ and ðxNphÞ0� can be found from Eq.
(2):

ðxNphÞ0þ ¼ B00ðx
E
phÞ

0
þ B0�ðx

E
phÞ

�;

ðxNphÞ0� ¼ B00ðx
E
phÞ

0
� B0�ðx

E
phÞ

�: ð16Þ

Substituting Eq. (16) into Eq. (15), one gets:

�ðxNphÞ0 ¼ �B0�ðx
E
phÞ

�: ð17Þ

Further substitution of Eqs. (17) and (9) into Eq. (12)
gives:

ðxNexÞ0 ¼ ðxEphÞ0 ¼ ðxEexÞ0 ¼ ðxLÞ0: ð18Þ

Therefore, we conclude that for any admissible transfor-
mation B, an experimenter will not detect a deflection of his
geometry from pseudo-Euclidean under measurement of
the time intervals. Besides, under the condition B�0 ¼ 0 the
same conclusion is additionally valid for the measurement
of length, so a deflection of geometry of physical space-
time from pseudo-Euclidean is not detectable experimen-
tally. On the other hand, the transformation B under
B�0 ¼ 0 belongs to a class of transformations
x00 ¼ x00ðxiÞ; x0a ¼ x0�ðx�Þ acting within fixed reference
frames. Thus, we have proved the following general
theorem:

Under any admissible transformation B from pseudo-Euclidean
to oblique-angled geometry within a fixed frame of reference
ðB�0 ¼ 0Þ a deflection of geometry from pseudo-Euclidean is not
experimentally observable, and the equalities (8) and (18)

obtained above can be written simultaneously as

ðxNexÞ
i
¼ ðxEexÞ

i
¼ ðxLÞ

i: ð19Þ

This theorem will play a key role in the physical
interpretation of covariant ether theories considered in
the next section.

4. Space-time transformations in covariant ether theories

The equality (19) obtained above means that for
any hypothetical oblique-angled geometry of an empty
physical space-time, related with the pseudo-Euclidean
one by means of transformation B under B�0 ¼ 0; the
measured space-time four-vectors in properly constructed
inertial reference frames are subject to Lorentz trans-
formations. In order to derive physical inferences from this
result, it is necessary to find a possible physical meaning for
such B-transformations. This can be done in the following
way:

Let us consider a class of space-time theories of inertial
motion in an empty space satisfying the following general
principles: space-time homogeneity; space isotropy; caus-
ality principle; general relativity principle (GRP). In these
theories, a general transformation between two arbitrary
inertial reference frames K and K0 in physical space-time
can be written as

xphi ¼ Aijx
0j
ph; ð20Þ

where allowable transformations A in (20) are linear
due to the space-time homogeneity and constitute a ten-
parametrical Lee group due to adoption of the GRP [17].
For simplicity we further omit trivial translations and
rotations of space, considering three-parametrical trans-
formations A(v), where v is the relative velocity of two
arbitrary inertial frames. In addition, the GRP also
requires the validity of a reciprocity principle [18]: the
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mutual velocities of two inertial reference frames should
differ only by sign; i.e.,

A�1
ðvÞ ¼ Að�vÞ: ð21Þ

In its turn, the equality (21) and causality principles ensure
that [18]

detA ¼ 1: ð22Þ

Thus, the transformations A are ‘‘special orthogonal’’.
Further, we do not in general suppose that the geometry

of physical space-time has to be pseudo-Euclidean in any
inertial reference frame. At the same time, due to the
isotropy of physical space, there exists an inertial reference
frame K0 such that the speed of light is isotropic and equal
to c; i.e., its geometry should be pseudo-Euclidean under
any particular choice of admissible A-transformation. In
order to specify this requirement, the existence of at least
one K0 frame with pseudo-Euclidean geometry for any
admissible transformation A, we can formally introduce
into consideration the Minkowskian coordinates xL and
demand the equality (23) for the frame K0 :

x0phi _¼¼ x0Li ð23Þ

(hereinafter the primed four-vectors belong to K0), and in
general case A 6¼L equality (23) is valid only for this
(‘‘absolute’’) frame. One can additionally show that Eq.
(23) simultaneously ensures that the xph coordinates are
‘‘admissible’’ wherein the known relationships between
components of the metric tensor g take place [11], and the
velocity of light is finite [13].
Using Eqs. (1), (20), (23), one can find a relation between

xph and xL in an inertial frame K moving at the constant
velocity v in K0 :

xphi ¼ BijðvÞx
j
L; ð24Þ

where the introduced matrix B is determined by the
relationship

BijðvÞ ¼ Ak
i ðvÞL

�1
kj ðvÞ: ð25Þ

At the same time, the four-vector xL; defined in the frame
K, does not depend on the velocity v of K in K0: Therefore,
xL should be considered as a constant in Eq. (24). Its
constant magnitude is determined for the particular case
v ¼ 0; where the matrices A, L are equal to the unit matrix,
and

x j
L ¼ x j

phðv ¼ 0Þ: ð26Þ

Substituting Eq. (26) into Eq. (24), one gets the dependence
of the physical space-time four-vectors xph on the
‘‘absolute’’ velocity v, which will be useful in further
consideration:

xphiðvÞ ¼ BijðvÞx
j
phðv ¼ 0Þ: ð27Þ

Further, using a known form of the matrix L (see, for
instance [19]) one obtains from Eq. (25) a relationship
between the matrices B and A:

B00 ¼
�

A00
; ð28aÞ

B�0 ¼ 0; ð28bÞ

B0� ¼ A0� þ A00 �
v�
c 2

� þ ð
1

A2
00

� 1Þ
v�
v2

ð� � 1Þ

� �
; ð28cÞ

B�� ¼ A�� þ A�0
v�
v2

�
1�

1

�

�
; ð28dÞ

where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2ð Þ

p
: (The derivation of Eqs. (28a)

and (28b) takes into account Eq. (21)).
Paying attention to Eq. (28b), we see that the coefficient

B�0 is always equal to zero for any admissible transforma-
tion A; this is a necessary and sufficient condition for
implementation of the equality (19). Hence, we conclude
that for any space-time theory of inertial motion satisfying
to general symmetries of space-time and the general
relativity principle, the space-time four-vectors measured
in experiments always obey the Lorentz transformation L

in Galilean inertial reference frames (corresponding to
Cartesian frames in three-dimensional space). From here
follows the fact that Lorentz transformation for measured
space and time intervals formally gives no information
about the geometry of physical space-time, and does not
generally reject ether theories with oblique-angled space-
time.

Let us show that the number of such admissible theories
is infinite. Indeed, in the general case the number of
coefficients in the matrix A is equal to 16. In the simplest
one-dimensional case this number is reduced to 4. Indeed,
in the one-dimensional case the transformation (20) is
written as

xph
� 	

0
¼ A00ðx

0
phÞ

0
þ A01ðx

0
phÞ

1;

xph
� 	

1
¼ A10ðx

0
phtÞ

0
þ A11ðx

0
phÞ

1:
ð29Þ

However, in such a case we are able to get only three
equations for coefficients of A. One can show that the
reciprocity principle (Eq. (21)) provides the equality:

A11 ¼ A00: ð30Þ

The relationship of A10 with A00 can be found from the
requirement:

ðx0phÞ
1=ðx0phÞ

0
h i

ðxphÞ1¼0
¼ v:

The last requirement and Eq. (29) lead to the equality:

A10 ¼ �vA00: ð31Þ

Further, Eqs. (22), (30) and (31) allow expressing A01 as:

A01 ¼
1� ðA00Þ

2

vA00
: ð32Þ
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Thus, the three obtained Eqs. (30)–(32) establish a
relationship between the coefficient A00 and all other
coefficients of the matrix A in one-dimensional case.
However, there are no restrictions on the concrete choice
of A00: This means the number of space-time theories
where the measured space-time four-vectors are subjected
to the Lorentz transforms is infinite. That is why all the
experiments for verification of Lorentz transforms (begin-
ning with the Michelson–Morley experiment and finishing
with the modern Champeney experiment [20]) find an
infinite number of alternative explanations of their results.
We conditionally name the acceptable theories ‘‘covariant

ether theories’’. The exclusive place of SRT among all such
covariant ether theories is defined by the fact that it directly
asserts the equality of measured and physical space-time
four-vectors, i.e., the equality of the matrices A and L. On
the other hand, this assertion follows from nothing: in
general, a question about coincidence of ‘‘measured’’ and
‘‘physical’’ values even under optimal measurements is one
of the fundamental questions to Nature. That is why it is
especially interesting to analyze a negative answer to this
question. One can easily see that a negative answer means
that A 6¼L. Under A 6¼L, the geometry of physical space-
time is oblique-angled, and we must distinguish space-time
transformations for physical and measured four-vectors:

xphi ¼ Aijx
0j
ph; ð33Þ

xexi ¼ Lijx
0j
ex; ð34Þ

where the primed four-vectors, as before, belong to the
‘‘absolute’’ frame K0: This means that these transforma-
tions do not yet solve the main kinematical problem
(determination of space-time transformations between two
arbitrary inertial frames): it acts only in the special case
defined by the equality (23). In order to find a transforma-
tion between two such arbitrary inertial frames K and K00,
we should write

xexi ¼ Li jðv1Þx
0j
ex; xexi

00 ¼ Lijðv2Þx
0j
ex; ð35Þ

xphi ¼ Aijðv1Þx
0j
ph; xphi ¼ Ai jðv2Þx

0j
ph; ð36Þ

where v1; v2 are the ‘‘absolute’’ velocities of the frames K
and K00, respectively. Excluding four-vectors x0jex from Eqs.
(35), and x j0

ph from Eq. (36), we obtain general transforma-
tions for measured and physical space-time four-vectors in
two arbitrary inertial frames:

xexi ¼ Li jðv1Þ½L
�1ðv2Þ�

jkx00exk; ð37Þ

xphi ¼ Ai jðv1Þ½A
�1ðv2Þ�

jkx00phk; ð38Þ

where the matrix A can be taken in arbitrary admissible
form.
Thus in contrast to SRT, under the hypothesis A 6¼L,

Nature does not ‘‘know’’ a direct relative velocity of two
arbitrary inertial frames K and K00: it is always composed
as a sum v1 � v2; where v1 and v2 are the corresponding
velocities of K and K00 in the ‘‘absolute’’ frame K0: This
means, in particular, that direct rotation-free Lorentz
transformation between measured space-time four-vectors

in K and K00 is impossible: according to general group
properties of these transformations, an additional rotation
of the coordinate axes of the frames K and K00 appears at
the so called Thomas–Wigner angle �; depending on v1
and v2: It is quite important that such a rotation occurs in
measured coordinates, i.e., it can really be detected. It
defines a principal possibility to experimentally distinguish
the hypotheses A ¼ L and A 6¼ L:

Among admissible space-time theories that assume
A 6¼ L; the simplest case corresponds to the choice
A ¼ G; where G is the matrix of Galilean transformation:
Gii ¼ 1; G�0 ¼ �v�; and all other Gi j ¼ 0: Substituting the
matrix G in place of matrix A in Eq. (28), one gets the
following coefficients of matrix B :

B00 ¼ �; B�0 ¼ 0; B0� ¼
v�
c2

�;

B�� ¼ ���
v�v�
v2

1�
1

�

� �
;

ð39Þ

where ��� is the Kronekker symbol. Further substitution of
Eq. (39) into Eq. (27) allows one to determine the
dependence of physical space-time four-vectors on the
‘‘absolute’’ velocity v of some arbitrary inertial reference
frame K:

rphðvÞ ¼ rphðv ¼ 0Þ þ
vðrphðv ¼ 0Þ; vÞ

v2
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
� 1�;

ð40Þ

tphðvÞ ¼
tphðv ¼ 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p þ
rphðv ¼ 0Þv

c2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p : ð41Þ

For the considered time intervals in a fixed spatial point
of the frame K ðrph ¼ 0Þ; we obtain the dependence of tph
on v [see, Eq. (41)]:

tphðvÞ ¼ tphðv ¼ 0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
; ð42Þ

that means an ‘‘absolute’’ dilation of time by the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv2=c2Þ

p
: Furthermore, one obtains from Eq. (40):.

rphðvÞ; v
� 	

¼ rphðv ¼ 0Þ; v
� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p

;

rphðvÞ � v

 �

¼ rphðv ¼ 0Þ � v

 �

;
ð43Þ

which means an ‘‘absolute’’ contraction of a moving scale
along a vector of ‘‘absolute’’ velocity (Fitzgerald–Lorentz
hypothesis). Finally, transformation (38) (under A ¼ G)

xphi ¼ ½Gi jðv1 � v2Þ�x
00
ph j

leads to the Galilean law of speed addition for the physical
light velocity cph:

Thus, we have got a full set of Lorentz ether postulates in
case A ¼ G:1 However, the physical space-time in the

1Let us recall the postulates of Lorentz ether theory in its modern form:

(1) There is an ‘‘absolute’’ reference frame K0; wherein the light velocity is

isotropic and equal to c: (2) In an arbitrary reference frame K, moving at

constant velocity v in K0; the velocity of light is equal to c0 ¼ c� v: (3) In
this reference frame K time is dilated by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
times. (4) In this

reference frame K a linear scale is contracted by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
times along

the vector v:
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Lorentz ether theory is not observable in an arbitrary
inertial reference frame, while the measured four-vectors
xex obey to the Lorentz transformations in form of (37).
(This important circumstance about a difference of
physical and measured four-vectors in non-Euclidean
geometry of moving inertial frames was dropped by
Lorentz and his successors). Therefore, we may consider
the Lorentz ether theory as one of the CET’s defined
above, and the simplest among them. Due to this fact, the
application of the Lorentz ether postulates for explanation
of ‘‘null’’ results of all experiments searching for ‘‘ether
wind speed’’ was always successful.

5. Experimental test of CET’s

So, we have found that the difference between SRT
ðA ¼ LÞ and CET’s ðA 6¼ LÞ appears on an experimental
level only in successive space-time transformations. It
follows from there that an instrument for measuring
hypothetical ‘‘absolute’’ velocity must contain moving
inertial parts, in order to deal with such transformations.
Then a general idea of an experiment for a choice between
SRT and CET’s can be described with help of the diagram
in Fig. 1. It shows the absolute frame K0; laboratory frame
K (moving at the constant absolute velocity v) and frame
Ki; attached to some moving inertial part of a measuring
instrument in K.
In our laboratory we specify a velocity u of Ki in K. In

such a case for the hypothesis A ¼ L we apply a direct
rotation-free Lorentz transformation K ! Ki for calcula-
tion of the indication of the measuring device. Hence,
according to SRT we get a vanishing value of absolute
velocity. Under the hypothesis A 6¼ L; Nature does not
‘‘know’’ a direct rotation-free Lorentz transformation
between K and Ki; and ‘‘operates’’ with the absolute
velocities of these frames v and v� u: Hence, in order to
calculate an indication of the measuring device, we must
apply the successive transformations K ! K0 ! Ki

according to Eq. (37). (A direct Lorentz transformation
from K to Ki is also possible, but it will not be rotation-
free). In this case the axes of the frames K and Ki are
turned out at the Thomas–Wigner angle �; that, in
principle, changes the state of the measuring instrument.
Since � depends on the absolute velocity v of the
laboratory frame K, the state of the measuring instrument
will depend on v; too. There is only one particular case (v is
collinear to u) where � ¼ 0; and the state of the measuring
instrument has to be unchanged for any magnitude of
absolute velocity of the laboratory frame. This is an
unambiguous inference from the GRP. All experiments
searching for ‘‘ether wind’’ velocity with experimental
instruments containing moving inertial parts, aiming to
measure non-relativistic effects under collinear v and u (see,
e.g., [20–22]), in fact checked the GRP, not the Einstein
relativity principle.
Thus, an experiment for qualitatively new tests of SRT

must contain moving inertial part (parts) with non-
collinear velocities v and u; and be aimed to measure the
dependence of the angle � on the absolute velocity of the
laboratory frame. To the order of magnitude c�2; and for
orthogonal vectors of v and u; this dependence is defined by
the expression (see, e.g. [19])� ¼ �uv=2c2:

A direct measurement of this dependence in a labora-
tory-scale experiment is impractical. Indeed, the absolute
speed v could be taken as about 10�3c (typical velocities of
Galaxy objects). The maximum value of u could be about
103 m=s: Hence, the angle � takes on the value 3� 10�9;
i.e., well below any limit of practicability in a laboratory
experiment.

An analysis of possible experimental schemes for indirect
measurement of the angle � can be greatly simplified under
numerical estimation of eventual non-relativistic effects,
proceeding from their dimension. Indeed, the experiments,
looking for the change of length associated with the � vð Þ

dependence, give an effect in the order of magnitude L�:
Here L is some length, which is equal to about 1m in the
laboratory scale. In such a case we get L� � 3� 10�9 m;
which is impossible to measure in practice. A correspond-
ing change of time has a dimension L�=u ¼ Lv=c2 � 3 ps;
a time interval within the range of present technology, but
not for mechanical parts necessarily involved. Finally, one
can rearrange the experiment into a ‘‘speed experiment’’
looking at the term �u; and the latter arrangement could
be further transformed into frequency measurement via the
Doppler effect ð�u=cÞ: For the last case one is looking at
the term u2v=c3; the latter being about 10�14 (for
u � 103 m=s)—a value accessible practically conveniently
only by the Mössbauer effect, at least as far as a
laboratory-scale experiment is concerned.

Thus, an indirect measurement of the � vð Þ dependence
in a Mössbauer experiment is a real way to unambiguously
check SRT. It can be accomplished in Champeney-type
experiments, using the most recent methodological devel-
opments in Mössbauer spectroscopy: resonant method of
registration of recoil-free radiation [13,23] or nuclear
resonant scattering of synchrotron radiation [15].

6. Conclusions

1. Consideration of all hypothetical theories of empty
space-time with curvilinear geometry should be based
on distinguishing between physical and measured space-
time four-vectors. General analysis of the properties of
admissible space-time transformations shows that in

Fig. 1. General idea for an experiment to provide a new test of Special

Relativity Theory.
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any theory adopting the general relativity principle and
symmetries of space-time, the measured space and time
intervals always obey the Lorentz transformation,
regardless of a concrete choice of physical space-time
transformation. The latter circumstance makes it
possible to explain all known experimental results in
space-time physics within an infinite number of admis-
sible space-time theories, called ‘‘covariant ether the-
ories’’.

2. SRT is unique among admissible theories of empty
space-time because it directly asserts an equality
between measured and physical four-vectors under
optimal measurements. Adoption of such an equality
defines the possibility of direct rotation-free Lorentz
transformation between two arbitrary inertial frames.
This is impossible in all other admissible space-time
theories, and they lead to a dependence of rotation angle
� on an ‘‘absolute’’ velocity v for the measured space-
time co-ordinates, subjected to the transformations (37).
Hence, the hypothetical dependence � vð Þ is the sole
observable physical phenomenon allowing an unambig-
uous test of SRT.

3. The most convenient method for the measurement of
� vð Þ dependence under modern development of labora-
tory experimental technique is Mössbauer spectroscopy:
either a resonant method of registration of recoil-free
radiation, or nuclear resonant scattering of synchrotron
radiation in Champeney-type experiments.
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