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Summary

• Erosion, and related transport of eroded materials, are the 
underlying mechanisms controlling PSI effects in fusion devices.

• Direct, time-resolved measurements of erosion are scarce and 
confined to small areas.

• Erosion measurements, direct or inferred, and accompanying 
modeling have typically left more puzzles than answers 
Ø Unacceptable uncertainties remain for important engineering ($$$) questions, 

such as choices of PFC materials.

• What are the outstanding questions on erosion? 
Ø And what tools (experiments + models)  do we need to answer them?
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Outline*

• Low-Z boronization films.

• Erosion in  low-Te detached plasmas.

• 3-D nature of erosion.

• Intermittent erosion and H/D/T recovery

• New PSI experiments and diagnostics in development.

* Focus on DIII-D, C-Mod, UW 
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Boronization film applications are 
prevalent, but what are their effects? 
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Intermittent, but persistent, introduction 
of boron can have tangible effects on 

carbon material and erosion.

DIII-D
2-40% B/C on all surface

Boric Acid Crystals
Boron-Doping Effects

At high Tsurf

Whyte CW 2000
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UW 1.7 MV tandem
ion accelerator 

C-Mod tile analysis

IBA analysis spot

Boronization has bigger impact on Mo tiles: 
Thick boron with “diffuse” tail into  the Mo 
substrate…but also Mo at surface ~1-5%?

6C10193: Midplane centerpost

Whyte PFC Dec 04

ALCATOR
C-Mod
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There is no evidence of discrete B film applications
(i.e. tree-rings) expected from intermittent boronizations.

Material is a ‘plasma-deposited compound’ 

3.5 MeV Alpha RBS provides
~20 nm depth resolution
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Boron dominated the C-Mod wall erosion 
pattern after ~7 years of boronizations.
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How did the plasma self-consistently produce 
these mixed material surface layers?
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Inner divertor tile toroidal “slopes” indicate
plasma-caused net Boron deposition

Alpha (3.5 MeV) RBS
“D” Inner Strikepoint Tile

B
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Inner divertor low-Z deposition is 
roughly consistent with Carbon tokamaks?

Boron deposition rate ~ 1 nm/s

“E”  Tile ~ Inner Strikepoint.
Shadowed region:  
dB1/2 = 0.2 microns

~4000 s~4000 s∆t

~1-3 nm/s
(C)

~0.1 nm/s 
(Mo)

Outer div. 
erosion

~ 1nm/s~ 1 nm/s
Inner div.
deposition

0.5 µm2.5 µmBzn. film 

~3-6 µm~ 3-5 µmDeposits

Inner Div.Inner div.Location

CB / MoPFC

DIII-DC-Mod C erosion/deposition
In DIII-D in one year

Walsh, J.Vac.Sci. Tech. 1992
Whyte, Nucl. Fusion 1999
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Raises several questions on retention

• D plasma fueling and 
deuterated boronizations.

• H arrives from air/H2O 
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recycling.

• Implies similar global retention 
rate for H/D/T as a carbon 
device?
Ø Supported by gas balance 

measurements showing strong 
net wall  pumping.

• But is this codeposition?
• What is in-situ H/D ratio?
• Implications for H isotope 

control?

Upper
divertor

Inner-
wall

Inner
divertor

Outer
divertor

0.01

0.1

1

10

100

0 5 10 15 20 25 30

Tile #

H / D  near surface

H / B near 1 micron



13Whyte, PSIF Workshop, ORNL, 03/05

And 1-2% D content deep into both B and Mo
to detection limit of ~ 10 microns.

006C01500 Concentration vs Depth
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Low Te detached divertors are necessary for 
heat flux control.

Detachment can solve erosion?

DIII-D:
Map
of divertor
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DIII-D shows a strong suppression of 
chemical erosion in detached plasmas

• Spectroscopy of CD/C2 interpreted 
first with code and now confirmed 
with CH4 puff experiments
(A. Mclean, U. Toronto)

• Te decreases to ~1-2 eV,
ED+ below energy threshold for 
chemical sputtering. 
Ø Also flux high and

Tsurf < 100 C.

• Demonstration suggests proper 
choice of Tsurf and graphite may 
greatly reduce chemical erosion 
in ITER.

• Other detached divertors?
Ø AUG: suppression of CH
Ø JET JT-60U: Ychem ~ 5%
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But can we identify controlling C source 
outside “principal” target area?

DIII-D outer divertor
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But can we identify controlling C source 
outside “principal” target area?

DIII-D inner divertor
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A further complication with chemical 
erosion is a long-term dependence on 
material conditions, but which ones?

• Chemical erosion reduced versus time?
Ø YES: (DIII-D, AUG) Ychem ~ 0.5% 
Ø NO: (JET, JT-60U) Ychem ~ 5 - 10% 

DIII-D
Whyte CW 2003
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Can we resolve erosion hyper-sensitivity 
to small changes in plasma conditions?

Neon-induced sputtering in detachment? 

DIII-D

Wampler 2002
Whyte FS&T 2005
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Can we resolve erosion hyper-sensitivity 
to small changes in plasma conditions?

High-Z erosion by low-Z ions 

No “post-diction” 
capability with 

regard to erosion in 
detached plasmas.

Krieger Lipschultz PSI02



21Whyte, PSIF Workshop, ORNL, 03/05

What caused such high deposition at JET 
louvers? Could not answer by chemical erosion 
even “cheating” on the external carbon source

Model: (Ychem~7%) ΦC,Louver ~ 0.7% x ΦD+

Experiment:    ΦC,Louver ~ 5% x ΦD+

Brooks PSI02
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What is the erosion/deposition 
pattern outside the divertor?

Large, irregular surface area

Non-uniform erosion source

ASDEX-Upgrade, Rohde CW2003
DIII-D, Mclean, APS04



23Whyte, PSIF Workshop, ORNL, 03/05

13-C tracer experiments on DIII-D: 
Deposition also occurs at main-wall. 

• PIGE diagnostic (UW) 
measures ~ 1-2 nm 
equivalent of 13-C 
enrichment around 
injection location.

Whyte ITPA 04
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Measurements at centerpost are consistent with 
plasma/ion deposition of 13C, with strong toroidal 

asymmetry on a tile due to faceting. 

The main-wall 
probably has a more 

complicated 
erosion/deposition 

pattern than divertor.
Whyte ITPA 04
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Preliminary inventory suggests that the inner main-
wall is an equally important location as the lower 

divertor for 13C deposition.

0.42Total inner wall

0.3Total inner divertor

0.222113Centerpost below 6 cm flux 
surface

1.0Total injected

Upper divertor baffle

Upper dome, divertor plate, 
centerpost

Location

0.12.83.626

1.3

13C fluence
(1020 m-2)

0.181, 28, 
29

13-C 
(1022)

Area
m2Tiles

Tracer experiments must really be interpreted as 
testing SOL plasma transport

Allen PSI 04, Wampler PSI 04, Whyte ITPA 04
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Neglecting 3-D can have large erosion 
consequences, but other effects?

Looking up at  DIII-D top divertor
• Prolonged outer strikepoint exposure to 

high power plasmas ablated ~cm3 of 
graphite.

• A thick sooty carbon layer was found 
underneath the outer baffle with line-
of-sight to bolt-holes.

• But no detrimental effects on plasma 
operations!

Bolt-hole

Large erosion
“divots” from
ablation

Outer
baffle /w
cryopump

R
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…but transient “macroscopic” MHD 
movement can often have severe results.

Example: DIII-D lithium exposure

R Φ, Β

reflection

DiMEs
Tangential viewing
Camera geometry

Quiescent erosion

Macroscopic Li release 
begins

Core Temperature collapses, 
Large Li influx to core

Radiative disruption follows

Whyte FED 04
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What causes and controls tile gap deposition?
~ 30-60% Deuterium in gaps, but near surface

Carbon
In TEXTOR

Boron
In C-Mod

Rubel CW 2003
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To what degree does intermittent transport 
dictate main-wall erosion processes?
Flux, ionization, redeposition are linked.

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

S. Zweben, J. Terry, C-Mod
Whyte PPCF 05
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Proposal for ITER: Tritium recovery by 
Radiative Plasma Terminations

• Exploit the high energy density of the ITER plasma.

• Convert plasma energy into a quasi-uniform radiation pulse by massive 
impurity injection
Ø Benign termination of the plasma discharge. 

• The radiation pulse transiently heats all plasma-viewing surfaces in 
order to desorb the tritium, which is released into the vessel as molecules 
and recovered by pumping.

• Significant tritium recovery at reduced plasma current, 
~ 6-10 MA, indicating the possibility of routine T recovery
Ø Current rampdown phase of each discharge
Ø Dedicated, short pulse tritium recovery discharges at low current.
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Calculations show routine repetitive application of RPT in 
current rampdown can limit T inventory by continually 
removing codeposited T from plasma-viewing surfaces.

Whyte PSI 04
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C-Mod:  H/D recovery using plasma surface heating
15 of 18 discharges: planned termination

Ip

Bt

H/H+D

H-α

ne

Pvessel (mTorr)

Wdia

Example q=2 planned disruption.

• Bt rampdown in Ip flattop

• 4 m3 Vessel pressure: 3 mTorr -->
~ 12 Torr-L of gas recovered.
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Principles of H2 desorption and recovery were 
generally validated.  

• Higher plasma T (> 2 keV) key to efficient 
H2 desorption
Ø Heat conduction (∝ T5/2) loss dominated 

disruption provides better localized heating 
of the wall surfaces

Ø .

• Up to 60 Torr-L of H2 recovered in single 
termination (1 MA VDE).
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• Gas released into the vessel becomes 
dominated by H2 “reservoir” as total 
desorption increases
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H2 recovery rate increased a factor of 5-10

&   Demonstrated control of H/D/T fuel inventory.

• Recovered ~25% of 
estimated H2 reservoir in 
walls.

• Wall pump ~ 5 Torr-L / shot 
without terminations!
Ø Similar to C tokamaks.

• Disrupting most plasmas 
resulted in a net surplus 
of recovered fuel (i.e. the 
opposite of global H/D/T 
retention).
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Most issues raised show critical need to 
resolve temporal dynamics of erosion

• PSI “archeology” of limited use 
for interpretation.

• Spectroscopy is indirect: 
Ø Long term changes clearly seen 

(DIII-D) or not (JET) but why?

• Important first step: QMB 
(Esser, Skinner)
Ø Result: surprises! (deposition in 

between discharges!)

NSTX, Skinner PSI04
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Need to resolve large range of 
timescales --> Diverse tools

• Intermittent transport (~ microseconds)

• Transient heating (~ms)

• Energy confinement (~s)

• Application of low-Z films. (1000 s)

• Long-term changes in material properties (months-to-years)
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PSI needs to expand from dedicated, small-
area experiments in confinement devices

• Mapping of lower divertor erosion took ~5 run days at ~ $1 M / day 
in DIII-D

• Need dedicated facilities that address these issues (and exploitation 
of present facilities like PISCES).

• & New in-situ diagnostics.
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MAGNUM PSI: New facility dedicated 
to erosion studies at Te ~1-3eV and 

collisionally coupled plasma-surface

Facility at FOM (NL): Steady-state, 3 T, L~3 m
H plasma: ne ~ 1021 m-3, Γ ~ 1024 m-2s-1, lMFP << a ~ 10 cm
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DIONISOS: New facility at UW to study 
dynamics of PSI combines plasma 

exposure with in-situ Ion Beam Analysis.

Dynamics of ION Implantation & Sputtering On Surfaces
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DIONISOS: Plasma and IBA 
designed for maximum flexibility

Steady-state helicon source

Pulsed Plasma Gun
• Pulsed (~1-10 ms) H/D plasmas .
• Te~20 eV high density 
• ne ~1020 m-3

• 10 MJ/m2/s1/2 per 100 V bias 
surpasses ablation/melt limits.

• j ~ kA / cm2
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DIONISOS: Facility in operation 
this spring.
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New diagnostic development for 
in-situ erosion/deposition/H retention 
measurements on shot-to-shot basis

• Alpha Radioisotope Remote Ion Beam Analysis

• Routine material diagnostic on robotic Moon 
and Mars missions.
Ø Alpha source: ~ 1 mCi Curium with ~ 12 year lifetime

• Thermally contacted to vessel PFC surfaces
Ø Implementation at regions of high heat flux.
Ø Remote solid-state electronics allow wide distribution. 
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B
Plasma-facing Tile surface

Twin sample 
surfaces:

Exposure position

Analysis position

S. Harrison

ARRIBA: Implementation on DIII-D

Source & detector not shown
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J x B

ARRIBA in motion
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B
Plasma-facing Tile surface

Twin sample 
surfaces:

Exposure position

Analysis position

S. Harrison

ARRIBA: Implementation on DIII-D

Source & detector not shown
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Conclusions

• Many outstanding questions for PSI.
ØScarce empirical data from fusion devices.

• Critical need for temporally & spatially resolved 
erosion & retention measurements.

• Supporting model & computation tools:
Ø Interpretative.
Ø3-D
Ø Intermittency


