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Outline
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Key Needs For Design

• Equilibrium Properties
• Scrape-off layer properties
• Heat and Particle Loads on Divertor PFCs
• Temporal Peaking  Specification (ELMs)
• Disruption Energy Deposition and Induced 

Currents
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Flux Geometry in FIRE
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Scrape-off layer properties
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Features of UEDGE

• Physics:
– Multispecies impurities; var. n, u||, Te,i, φ
– Flux-limited kinetic corrections
– Reduced Navier-Stokes neutrals or Monte Carlo 

coupling
– Multi-step ionization and recombination; sputtering



7

UEDGE Modeling Results

• A single-null FIRE variant has more than 2 times 
the peak heat flux of the double-null

• Neon injection can induce partial detachment
• Helium pumping in the private flux region 

appears adequate
• Peak power scales nearly inversely with density 

and with anomalous diffusion coefficient
• Midplane profiles show scaling with core-edge 

density and transport coefficients
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FIRE designed for double-null divertor

• FIRE divertor must 
tolerate 28 MW into 
the SOL (DN)

• For 150 MW fusion 
power, helium must be 
removed at a rate of 
5x1019 particles/sec

• Edge density is set to 
3x1020 m-3

• Unity recycling with PF 
pumping

Double
null

Single 
null 
variant
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Heat and Particle Loads on 
Divertor PFCs



10

SOL Heat Loads from UEDGE
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Heat Loads on the Divertor
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Power Balance is Sensitive

• UEDGE now treats 
range from single-null 
to double-null

• Double nulls reduce 
peak heat flux, but 
balance is delicate

• ExB flows and 
currents produce 
asymmetries 

• Code reproduces 
measured DIII-D heat  
flux imbalance

drSEP - distance between two 
separatrices at outer midplane

DIII-D heat-flux asymmetry between
upper & lower divertors - T. Petrie
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Divertor Pumping Geometry

Cryo-Pump
(16 locations)

Pumping speed 
100 Pa/m3/s
(2.5 x 1022/s)

MAU 12/8/00
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Temporal Peaking  
Specification (ELMs)
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Estimate of ELM Heat Loads

• Best understanding of ELM energy losses at 
Snowmass indicated 3.6 MJ in a typical Type I 
ELM

• All of the ELM energy goes to the outer divertor
• The effective area of the outer divertor is 2.4 m2

• The energy deposition is 1.5 MJ/m2

• The melting threshold is between 0.5 and 1.5 
MJ/m2 depending on the ELM duration (0.1 or 
1.0 ms)

• Type I ELMs are a life limiting event for the 
divertor.
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• ELM Energy Deposition on the FIRE Divertor Plates 
assumed
– Either 2% or 5% of stored energy lost
– Energy deposited is estimated to be 0.3 to 1.2 MJ/m2 with a 

duration of 0.1 ms

• ELMS are the greatest threat to long lifetime PFCs 
(disruption mitigation is likely to be effective)
– Melting, thermal fatigue, 

• Either ELM mitigation methods are found or plasma 
operation will have to be less optimized (less 
confinement)

The Problem with ELMs
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Allowed ELMs on FIRE
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Type II ELMs

• At high density (nped >70% nGR), ELMs losses can 
become purely convective with ∇TELM~0

• Conditions of access vary: high  δ is required 
(possibly q95 >3.5)

• High βp (JT60-U) and proximity to DN (ASDEX-U, 
JT60-U?)

• Type II ELMs in ETB H-modes so far observed for 
pedestal parameters near the Type I-III transition 
(ASDEX-U, and mixed ELM regime in JET and DIII-D 
QDB)

• DIII-D Locked Mode coils reduce ELM size without 
affecting confinement

From Saibene, EPS
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Disruption Energy Deposition 
and Induced Currents
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Disruption Modeling with TSC

• Two Scenarios considered:
– Vertical disruption with maximum Ip dot
– Vertical disruption with maximum halo currents

• Current versus time was provided for about 900 
filaments representing the plasma

• The plasma filaments had to be reduced in 
number to reduce the disruption analysis time 
(external field pattern not altered) 
– How to judge how far this can be taken?

Data provided by C. Kessel, PPPL
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Plasma Filaments
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Disruption Cases from TSC
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Idot in Disruption Cases
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Halo Currents

• Halo currents are typically prescribed by a 
fraction of the plasma current and a toroidal 
peaking factor (both empirical)

• Taking either a peaked or a uniform distribution 
gives the same halo current in the worst 
location.

• The maximum halo current range is from 200 
kA/module (FIRE) to about 300 kA/module 
(ITER).
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Progress On Modeling

• More fidelity
– Inclusion of non-fluid neutrals treatment in UEDGE
– Inclusion of EXB drifts
– Coupling of UEDGE with WBC/REDEP

• Standard output formats
– EQDISK files for magnetic geometry
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Challenges For Moving Forward

• Standardized interface with UEDGE
• Simplified output from TSC
• Analytic methods to replace Monte Carlo 

methods (improved throughput)
• Improved ELM models leading to 
• Understanding and control of ELMs
• Understanding of variation of χe, χi, D, vconv, etc. 

with plasma parameters
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A Specific Request

• Alcator C-Mod is planning to install a cryo-pump 
soon
– The location is in the upper divertor chamber
– In single null operation, the particle flux to the upper 

divertor should be strongly influenced by convective 
transport

• Compute the expected performance of the cryo-
pump using the best combination of codes
– Excellent test of convection models
– Excellent test of coupling of SOL and neutral models
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Conclusions

• There is a need for standard interfaces with SOL 
codes and operating mode codes that provide 
data needed for PFC design without excessive 
details

• The coupling of SOL and accurate neutral 
models is very important

• Control of ELMs is essential for long pulse future 
fusion devices

• Progress in mitigating disruptions is very 
promising


