
 1

 

Meso-scale structures and anomalous 
convective transport at the edge of 

magnetic confinement devices 
 
 

Sergei Krasheninnikov 

 
   University of California at San Diego, USA 

 

with contributions from 

A. I. Smolyakov1, G. Yu2, and T. K. Soboleva3 
1University of Saskatchewan, Saskatoon, Canada 

2University of California at San Diego, La Jolla, CA, USA 
3UNAM, Mexico D.F., Mexico and Kurchatov Institute, Moscow, Russia 

 
Workshop on New Directions for Advanced Computer Simulations and 
Experiments in Fusion-Related Plasma-Surface Interactions for Fusion 

ORNL, Oak Ridge, TN, March 21-23, 2005 



 2

 

 

 

Outline 

 

I. Recent accomplishments 

II. Parallel E×B shear drive and plasma radial convection 

III. ∇⊥Te drive and plasma radial convection 

IV. Estimates 

V. Conclusions 



 3

I. Recent accomplishments 

• In many cases strongly localized filaments of plasma pressure 

inhomogeneities emerge in the tokamaks 

• The examples of such cases are the plasma blobs in the scrape 

of layer (SOL), pellet clouds, ELMs 

filament with high
plasma pressure  
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• They all exhibit more convective rather than diffusive radial 

transport of plasma 

• Similar features of convective crossfield plasma transport 

toward the wall were observed also in stellarators and linear 

plasma devices 

• Rather comprehensive study of these phenomena shows 

striking similarities between them through different devices 
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Blobs in DIII-D, Boedo, PoP 2001  

 

Blobs at LAPD,  Carter, APS-2002
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• The ∇B in toroidal and “neutral wind” in linear devices result in 

plasma polarization and, correspondingly, the E×B radial 

convection of the blobs with radial velocity  Vb ~ 1000 m /s 

(Krasheninnikov, TTF-1998, PLA, 283 (2001) 368; D’Ippolito et al., PoP 9 

(2002) 222; Bian, et al., PoP 10 (2003) 671; Krasheninnikov and Smolyakov, 

Phys. Plasmas 10 (2003) 3020) 
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tokamak 

 
• For Te = const. we describe both ∇B and “neutral wind” effects 

x

y

Lcon B

material
surface

geff

 

∇⊥ ⋅ ndt∇⊥φ( )+ Csη∂yn =

= (2Cs /ρs
2Lcon )nφ

 

       dtn = 0 

 
dt (...) = ∂t (...) + VE×B ⋅∇(...) 

η∇B ≡ 2 /ρsR;  ηnw ≡ ξf/s(νiN ρs
2ωBi); Vb = Csη ρs

3Lcon /δy
2( ) 
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• 2D numerical modeling suggests that only the blobs with 

δb ~ δ∗ ≡ 2ρs(L /ρs )2 /5(η)1/5  seems to be able to move as a 

coherent structures at large distance 



 10

 

 

Impact of sheared biasing (Yu and Krasheninnikov PoP, 2003)
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Blobs in the vicinity of separatrix, effect of X-point 

separatrix

magnetic
flux surfaces

magnetic
flux tubes

(1)

(2)

X-point

(3)

 

 

Strong magnetic shear in 

the vicinity of X-point 

results in dramatic 

squeezing of magnetic 

flux tubes to the level 

below ion larmor radius 

(D. Farina, R. Pozzoli, and D. 

D. Ryutov, Nucl. Fusion 33, 

1315 (1993)) 
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• As a result, plasma cross-field resistivity becomes important 

• Introduce squeezing function   S(A) ≈ exp(−A /LX ), where   A is 

the length along the magnetic field line and LX is the effective 

squeezing length (in current large tokamaks LX ~ 103 cm) 

• The effective wave number of the potential perturbation varies 

as follows:   K(A) = k /S(A), where k is the wave number at the 

entrance into X-point region 

• We balance perpendicular,   j⊥ = −iσ⊥K(A)ϕ, and parallel, 

  j|| = −σ||(∂ϕ /∂A), currents and get  

  ∂
2ϕ /A2 = −(σ⊥ /σ|| )K

2(A)ϕ 
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• As a result we find relations between parallel current and 

electrostatic potential at the entrance to X-point region 

 

 j|| entr ≈ σeff | k | ϕ entr,   where σeff = ωpe
2 /(4πΩe ) 

   

• Approximating wave number of the blob at the entrance into 

X-point region as k ~ 1/δb, we use this relation in 2D vorticity 

equation and find 

 

 ρs
2∇⊥ ⋅ n d∇⊥φ

dt
 
 
 

 
 
 

+ 2ρsCs
R

∂n
∂y

= 2Cs
Lb

ρs
δb

nφ ⇒ Vb ~ Cs
ρs
δb

Lb
R
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(Krasheninnikov, Ryutov, and Yu, to appear in the Journal of Plasma and 
Fusion Research, 2005) 
 

High � blobs vs pellet clouds and ELMs 

• So far we neglect an impact of blob on the structure of the 

magnetic field assuming that βb is small 

Br
B

~ 4π
c

j||δb ~ βb
Lb
R
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limiters
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• At relatively large βb 

bending of the magnetic 

field lines become so 

strong 

βb ˜ > βcrit ~ R∆w
Lcon

2  

• To describe the evolution of blobs with βb > βcrit  within the 

framework of simple 2D model we use the approach adopted 

for pellet cloud dynamics (V. Rozhansky, et al., Plasma Phys. Control. 

Fusion 37, 399 (1995); P. B. Parks, et al., Phys. Plasmas, 7, 1968 (2000)) 

• Introducing vector potential A|| and using linear relations to 

account for the bending of magnetic field we find  
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ϕ = VA
c

A|| ⇒  j|| = − c2

4πVA
∇⊥

2 ϕ 

ρs∇⊥ ⋅ n d∇⊥φ
dt

 
 
 

 
 
 

+ 2Cs
R

∂n
∂y

=− 2VA
Lb

nambρs∇⊥
2 φ 

• We find that “blob” velocity is independent on δb 

Vb ~ Cs
Cs
VA

Lb
R

= Cs β Lb
R

~ 0.1× Cs 
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Pelets/ELMs/high � blobs 

 

 “Sheath” blobs 
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II. Parallel E×B shear drive and plasma radial 
convection 

• The drive responsible for the parallel E×B shear instability 

(Kadomtsev 1965, Lee, Catto, Aamodt, 1982; Tsidulko,  Berk, Cohen, 1994; 

Myra, D’Ippolito, Goedbloed, 1997) can result in convective transport 

• For Te = const. we use electron parallel momentum balance 

equation, ∇ ⋅ j = 0, and continuity equation 

1
c

∂ψ
∂t

+ ∇||
Te
e

ln(n)− ϕ
 
 
 

 
 
 = 0,  ∇⊥ ⋅ c

VA
2

d
dt

∇⊥ϕ
 

 
 

 

 
 = ∇||∇⊥

2 ψ,    d
dt

n = 0 

• Introducing G = φ − ln(n /n∞), from these equations we have 
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∂
∂t

∇⊥ ⋅ 1
VA

2
d
dt

∇⊥φ
 

 
 

 

 
 = ∇||

2∇⊥
2 G,    ∂

∂t
φ = d

dt
G.   (1) 

• Introducing G = φ − Λ and neglecting nonlinearities in LHS of 

(1) outside blob we find 

1
VA∞

2
∂2

∂t2 G = ∇||
2G ⇒  G = G(+)(A || − VA∞

t),   G = G(−)(A || + VA∞
t) (2) 

• Integrating (1) over blob in || coordinate and using (2) we find 

 
  
Lb

∂
∂t

∇⊥ ⋅ 1
VA

2
d
dt

∇⊥φ
 

 
 

 

 
 =

∂
∂A ||

∇⊥
2 G

−blob

+blob
= − 2

VA∞

∂
∂t

∇⊥
2 G (3) 

• From Eq. (1) and (3) we have   
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LbVA∞

2VA
2

d
dt

∇⊥φ = −∇⊥G;   ∂
∂t

φ = d
dt

G     (4) 

• In a long wavelength approximation, ∂t (...) << VE ⋅ ∇(...), from 

(4) we find 

 ∂
∂t

φ = −
LbVA∞

2VA
2 VE ⋅ VE ⋅ ∇⊥( )∇⊥φ{ }       (5)

• From (5) we recover Lee, Catto, Aamodt: γ = Lb /2VA( ) VE ⋅ k( )2 

• We are looking for solution of (5) in the form of traveling wedge 
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x

φ (x,y )y

U
 

η = y /(x + Ut)β   (6);     φ(x,y, t) = (x + Ut)α F y /(x + Ut)β( ), (7) 

 
• For VA∞

≈ VA substituting (7) into (5) we find: β = α −1/2 and 

  
u αF − (α −1/2)ηdF

dη

 

 
 

 

 
 = −α2F2 d2F

dη2 +

+ dF
dη

 

 
 

 

 
 
2

α(2 − α)F − (α −1/2)(3/2 − α)ηdF
dη

 
 
 

 
 
 

 (8) 
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where u = 2VAU /Lb Csρs( )2 

• We solve Eq. (8) numerically for α = 3/2, here 

F(η)∝ (η0 − η)1/2 at η = η0, and F(η > η0 ) = 0 can be matched 

by diffusion 

 



 23

0.5

0.5

1

1

η/ (u1/2 F(0))

F(η)/F(0)

0
 

• From here we find U ≈ U|| ≡ Cs
LbCs
ρsVA

φ0(x)( )2ρs
3

y0(x)( )3 ; φ0(x) and 

y0(x) are the normalized potential and wedge’s width  
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III. ∇⊥Te drive and plasma radial convection 

• The drive responsible for ∇⊥Te instability in SOL (H. L. Berk, D. 

D. Ryutov, and Yu. A. Tsidulko, 1991; H. L. Berk, R. H. Cohen, D. D. 

Ryutov, et al., 1993; X. Q. Xu, M. N. Rosenbluth, and P. H. Dimond, 1993; 

Myra, D’Ippolito, Goedbloed, 1997; D. D. Ryutov and R. H. Cohen, Contr, 

2004) can also result in convective transport 

• This instability is associated with the effective sheath resistivity 

which relates plasma current through the sheath, jsh, and 

electrostatic potential ϕ relative to the wall 

jsh= ensh
Te
M

1− M
2πm

exp − eϕ
Te

 

 
 

 

 
 

 
 
 

 
 
 

,     (9) 
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• Assuming that plasma density, temperature, and electrostatic 

potential are uniform along the field lines, we vorticity equation 

integrate plate to plate and use (9) as a boundary condition for j||:  

∇⊥ ⋅ n
MΩi

2
d
dt

∇⊥(eϕ)
 

 
 

 

 
 =

2n
Lcon

Te
M

1− M
2πm

exp − eϕ
Te

 

 
 

 

 
 

 
 
 

 
 
 

,   (10) 

where Lcon is the connection length 

• In addition to Eq. (10) we use energy balance equation in 

simplest form of advection of electron temperature  

 d
dt

Te = 0.             (11) 
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• Although the plasma contact with end plate is crucially important 

for Eq. (10), it can be neglected in electron temperature equation 

• To simplify the problem even more we assume constant plasma 

density and relatively small variation of plasma temperature 

potential Te = T0 + δTe, ϕ = ϕ0 + δϕ, where | δTe |< T0 = const. 

and | δϕ |< ϕ0 = const. 

• Then from Eq. (10) and (11) we have 

ρs
2Lcon
2Cs

d
dt

∇⊥
2 φ = φ − ϑ,  d

dt
ϑ = 0.    (12) 

where φ = eδϕ / T0 and ϑ = 0.5 ln M /2πm( )δTe 
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• In a long wavelength approximation, ∂t (...) << VE ⋅ ∇(...), we find 

2Cs
ρs

2Lcon

∂φ
∂t

= VE ⋅ ∇ VE ⋅ ∇ ∇⊥
2 φ( ){ }                     (13) 

• From (13) we recover the result of Berk, Ryutov, and Tsidulko: 

γ = ρs
2Lcon 2Cs( )VE ⋅ k( )2 k2 

• Introducing w = 2U /(ρs
4LconCs) and applying ansatz (7) to Eq. 

(13) we find β =1, α = 5 /2, and, for ∂y(...) << ∂x(...), 

w 5
2

F − ηdF
dη

 

 
 

 

 
 =

d2F
dη2

dF
dη

 

 
 

 

 
 
2

− 5
2

F d2F
dη2

 

 
 

 

 
 
2

+ 5F dF
dη

d3F
dη3 + 25

2
F2 d4F

dη4

     (14) 
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• We solve (14) numerically searching for the solution, which 

approaches zero at η = η0 as F(η)∝ (η0 − η)3/2, and which can 

be matched with unperturbed solution δϕ = 0 outside the wedge 
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η/ (w1/2 F(0))

0.5

1

F(η)/F(0)

-dF/dη

 
• As a result we get the following expression for convective 

velocity U ≈ U∇Te
≡ 45Cs φ0(x)( )2 η0

ρs
4Lcon

y0(x)( )5  
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• Numerical simulation also shows that the wedge-like structures 

are formed and convected radially 
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• However, more modeling is needed to verity the analytic results 

and describe the process of the formation of coherent structures 

IV. Estimates 
• Estimating VE ⋅ ∇(...) ~ Csφ0(x)ρs /y0

2(x) and ∂t (...) ~ u /y0(x) 

we find both δ(...) ~ k∗
−1 and U||(δ|| ) and U∇Te

(δ∇Te
)  

δ||
ρs

≈ Lb
ρs

βp
1/2 

 
 

 

 
 
1/2

, U||(δ|| )
Cs

≈ βp
−1/2 ρs

Lb

 

 
 

 

 
 
1/2

δ∇Te

ρs
≈ Lcon

ρs

 

 
 

 

 
 
1/4

,
U∇Te

(δ∇Te
)

Cs
≈ ρs

Lcon

 

 
 

 

 
 
1/4

, (15) 

• For βp ~ 10−3, and Lb /ρs ~ Lcon /ρs ~ 3×104 ⇒  
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ρs /δ|| ~ U||( )δ /Cs ~ 0.03 and ρs /δ∇Te
~ U∇Te( )δ /Cs ~ 0.1, 

which is consistent with experimental observations 

V. Conclusions 

• We find that blob dynamics in tokamk and linear devices can 

be described with some particular class of equations which 

explain similarity in experimental data from these machines 

ρs
2∇⊥ ⋅ n d∇⊥φ

dt
 
 
 

 
 
 

+ Csη
∂n
∂y

= 2Cs
Lcon

nφ (SOL, linear device) 

ρs
2∇⊥ ⋅ n d∇⊥φ

dt
 
 
 

 
 
 

+ 2ρsCs
R

∂n
∂y

= 2Cs
Lb

ρs
δb

nφ  (close to separatrix) 
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ρs
2∇⊥ ⋅ n d∇⊥φ

dt
 
 
 

 
 
 

+ 2ρsCs
R

∂n
∂y

=− 2ρsVA
Lb

nambρs∇⊥
2 φ (large beta) 
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• In some sense these equations are similar to the Boussinesq 

approximation of 2D Rayleigh-Taylor instability 

dt∇⊥
2 ψ+ g ∂T

∂y
= µ∇⊥

4 ψ,  dtT = 0, 

• However, “dissipative” terms in bob equations are different 

from RT 

• It brings structural stability of blobs and allow them to 

propagate on large distance as a coherent structure 

•  Drives due to parallel E×B shear and grad(Te) can result in 

blob radial convection with velocity closed to that observed in 

experiment 
 
 



 35

 
 
 
 

• Our studies of nonlinear structures driven by parallel E× B 

shear and ∇⊥Te drives pose more general question:  

 

What is the role of long wavelength relatively slow 

but aperiodically growing modes? 

 

• Often it is assumed that anomalous transport is described by 

diffusion with diffusion coefficient 

Deff ~ γmax /kmax
2 , 
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where γmax is maximum value of the growth-rate and kmax is the 

wave number which corresponds to this growth-rate 

• However, could it be that long wave-length aperiodically 

growing modes are responsible for non-diffusive 

(convective!?) transport of the structures (blobs/ELMs!?) with 

rather-stable scales ~ k∗
−1, such that VE ⋅ k ~ γ and effective 

radial velocity 

Veff ~ γ∗ / k∗ 

• Also, what is the role of high k modes and their interactions 

with these structures?  

• Can high k modes alter convective transport? How? 
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