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Background  
 
(a)  Codeposition 
 
• Codeposition entails the formation of hydrogenated carbon layers 

via the redeposition of eroded C in combination with the fuel H. 
 
• Such layers can exceed tens of µm (e.g., TFTR tile gaps and JET 

flakes). 
 

o Much thicker than the ion-implant zone, which is ~ tens of nm  
 
o The codeposited layer has no limit to its thickness  

 
o The H/C ratio in the codeposited layers is similar to that seen 

in the implantation zone, viz, ~0.4 at ~300K; it is lower at 
higher temperatures 
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• Based on experience with current tokamaks (e.g.,Federici et al, NF 
Review/2001) and predictions for ITER (Brooks et al/1998), most 
of the T in ITER is expected to be trapped in codeposits  

 
 
 
(b)  Codeposit Removal via Thermo-Oxidation 
 
• Laboratory measurements of H and D removal from lab-produced 

films and tokamak codeposits lead to three key conclusions: 
 

o Release of D occurs in conjunction with C erosion             
(Haasz et al/1996/1998, Wang et al/1997, Alberici et al/1998) 

 
o D removal and C erosion rates depend on film structure 

 
o D release rate during oxidation is a function of temperature 
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(c)  Reaction Product Analysis during Oxidation 
 
 
 
• Results of Haasz et al/1996 and Alberici et al/1998 show that: 
 

o Essentially all of the D is removed via D2O formation 
 

o C is removed by the formation of CO and CO2  
 

o No D2 and no methane are formed 
 
 
 

 
Figure 1 (Haasz et al/JVST/1996) 
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(d) Comparison: Lab Films and Tokamak Codeposits 
 

• C-erosion rates of lab films are of the order of a few to tens of 
nm/h at temperatures < 700 K 

 
• C-erosion rates for tokamak codeposits (TFTR, DIII-D, JET) are   

2-3 orders of magnitude higher under similar conditions  
 

o For tokamak codeposits C-erosion rates in O2 (PO2=2.1 kPa):  
    

~ 0.1-1 µm/h at 523K (250oC) 
~ 1-10  µm/h at 623K (350oC) 

 
o Similar erosion rates in air for equivalent O2 partial pressure 

 
 
• Addition of ozone to air/oxygen increases the erosion rate:  

~ 1-2 µm/h at ~ 460 K (Moormann et al/2002) 
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Objective of Present Study 
 
 
 
To study the pressure and temperature dependence of  
 
• The D removal rate and 

 
• The film erosion rate  

  
of tokamak codeposits obtained from DIII-D and JET divertor tiles 
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Codeposits from DIII-D and JET 
 
   
Previous characterization of DIII-D and JET codeposits:  
 
DIII-D: 
• Thickness: ~ 2µm (from SEM photos) 
• few % metal contamination (X-PIXE, Walsh et al/JVST/1992) 
• D/C ~ 0.185 (based on assumed film density of 1.3 g/cm3) 

 
 

JET:   
• Thickness:  ~ 2µm (from SEM photos) 
• up to 10% Be content in some regions; in shadowed regions of the 

tiles (a substantial fraction) there was no Be deposition (Ion beam 
analysis, Coad et al/JNM/1997) 

• D/C ~ 0.25 (based on an assumed film density of 1.8 g/cm3) 
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Specimens Used in Present Study 
 
Tile locations:  
 

DIII-D:  lower divertor  (Figure 2a) 
 

JET:  Mark I divertor  (Figure 2b) 
 
 
XPS surface analysis: 
 

shows the presence of Ni on the surface 
 

DIII-D: Ni fraction < 1% prior to oxidation  
(~ 9% after oxidation) 

 
JET: Ni fraction < 1% after oxidation  

(no data available for specimens prior to oxidation) 
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Baffle

Cryopump

Bias Ring

Tile used in oxidation experiments  
 

 
Figure 2a) Location of DIII-D Tile in the lower divertor 
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Figure 2b): Location of JET Tile (6A) 
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Experiment  
 
 
Experimental apparatus        (See Figure 3) 
 
• Baking to 620 K (350oC) 
• O2 pressure to 1 atm 

 
Procedure 
 
• The oxidation chamber, with the specimen, is baked to the 

desired test temperature 
• After the desired oxidation time, the remaining D content in the 

specimen is measured using laser-induced TDS 
• RGA detection of desorption products (D2, H2 and HD) 
• Absolute calibration of RGA using a D2 leak bottle 
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Results 
 
 

(a) D removal and erosion rates 
 

As function of O2 exposure time for a fixed pressure of  
 

2.1 kPa (16 Torr) and 3 temperatures 
 
 
• DIII-D:   (Figure 4a)  

 
 
• JET:   (Figure 4b)  
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Figure 4a) 
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(a)  D removal and erosion rates (cont’d) 
 
 
 
 
As function of O2 exposure time for a fixed temperature of  
 

623 K and 3 pressures 
 
 
• DIII-D:   (Figure 5a)  

 
 
• JET:   (Figure 5b)  
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Figure 5a) 
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(b)  Initial D removal and erosion rates  
 
 
 
 

As function of O2 pressure at 3 temperatures: 
 
 
• DIII-D:   (Figure 6a)  

 
 
• JET:     (Figure 6b)  
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Figure 6a) 
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(c)  Final D content after oxidation  
  
 
 
 
As function of O2 pressure at 3 temperatures: 
 
 
• DIII-D:   (Figure 7a)  

 
 
• JET:     (Figure 7b)  
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Figure 7a) 
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(d)  Effect of surface impurities on D removal  
  
• Surface analysis (XPS) of Specimens used in the present study 

shows the presence of Ni on the surface 
 

DIII-D: Ni < 1% prior to oxidation and ~ 9% after oxidation 
JET: Ni < 1% after oxidation (no prior-oxidation data) 

 
Not enough information to assess effect of Ni content on the 
final D content after oxidation   (Figures 7a and 7b) 

 
 
 
• Previous study with W impurity on lab film (Davis et al/JNM/2002) 
 

Controlled deposition of sputtered W on lab-produced film 
 
W inhibits oxidation           (Figure 8) 
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Conclusion 
 
The initial D removal rate during oxidation: 
 

• Strongly depends on temperature – rate increases with 
increasing temperature 

 
• Has a weak dependence on oxygen pressure – especially 

at 623 K (not much difference between 2.1 Pa and 21 Pa) 
 
The final D content after oxidation: 
 

• Strongly depends on temperature – D content decreases 
with increasing temperature 

 
• Also has a strong dependence on oxygen pressure – 

especially at 623 K (a factor of 4-10 decrease as the 
pressure goes from 0.21 Pa to 21 Pa) 
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Implication for ITER 
 
 
 
Based on the C erosion rates measured in lab experiments for  
 
tokamak codeposits, if a reactor could be heated to approximately  
 
620 K (350oC) during oxidation, then T-containing codeposits of ~  
 
30 µm thickness could be eroded within ten hours. 
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Outstanding Issues for Lab Studies 
 

• Systematic characterization of co-deposits (structure, 
composition) before and after oxidation 

 
• Reaction product detection during oxidation (correlation of D and 

C in the reaction products and the codeposits)  
 
• Study of temperature and O2 pressure dependence of codeposit 

erosion from several locations in tokamaks 
 
• Study of the observed levelling-off of D removal from codeposits 

during lab oxidation at fixed O2 pressures 
 
• Effect of impurities within codeposits on oxidation rates 

 
• Collateral damage of in-vessel reactor materials 


