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Background

(a) Codeposition

e Codeposition entails the formation of hydrogenated carbon layers
via the redeposition of eroded C in combination with the fuel H.

e Such layers can exceed tens of um (e.g., TFTR tile gaps and JET
flakes).

o Much thicker than the ion-implant zone, which is ~ tens of nm
o The codeposited layer has no limit to its thickness
o The H/C ratio in the codeposited layers is similar to that seen

In the implantation zone, viz, ~0.4 at ~300K; it is lower at
higher temperatures
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e Based on experience with current tokamaks (e.g.,Federici et al, NF
Review/2001) and predictions for ITER (Brooks et al/1998), most
of the T in ITER is expected to be trapped in codeposits

(b)  Codeposit Removal via Thermo-Oxidation

e Laboratory measurements of H and D removal from lab-produced
films and tokamak codeposits lead to three key conclusions:

o Release of D occurs in conjunction with C erosion
(Haasz et al/1996/1998, Wang et al/1997, Alberici et al/1998)

o D removal and C erosion rates depend on film structure

o D release rate during oxidation is a function of temperature
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(c)  Reaction Product Analysis during Oxidation

e Results of Haasz et al/1996 and Alberici et al/1998 show that:
o Essentially all of the D is removed via D,O formation
o C is removed by the formation of CO and CO,

o No D, and no methane are formed

Figure 1 (Haasz et al/JVST/1996)
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(d) Comparison: Lab Films and Tokamak Codeposits

e C-erosion rates of lab films are of the order of a few to tens of
nm/h at temperatures < 700 K

e C-erosion rates for tokamak codeposits (TFTR, DIII-D, JET) are
2-3 orders of magnitude higher under similar conditions

o For tokamak codeposits C-erosion rates in O, (Po,=2.1 kPa):

~ 0.1-1 ym/h at 523K (250°C)
~1-10 pm/h at 623K (350°C)

o Similar erosion rates in air for equivalent O, partial pressure

e Addition of ozone to air/oxygen increases the erosion rate:
~ 1-2 ym/h at ~ 460 K (Moormann et al/2002)
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Objective of Present Study

To study the pressure and temperature dependence of
e The D removal rate and

e The film erosion rate

of tokamak codeposits obtained from DIII-D and JET divertor tiles
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Codeposits from DIlI-D and JET

Previous characterization of DIII-D and JET codeposits:

DIII-D:

e Thickness: ~ 2um (from SEM photos)

o few % metal contamination (X-PIXE, Walsh et al/JVST/1992)
e D/C ~ 0.185 (based on assumed film density of 1.3 g/cm®)

JET:
e Thickness: ~ 2um (from SEM photos)

e up to 10% Be content in some regions; in shadowed regions of the
tiles (a substantial fraction) there was no Be deposition (lon beam
analysis, Coad et al/lJNM/1997)

e D/C ~ 0.25 (based on an assumed film density of 1.8 g/cm®)
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Specimens Used in Present Study

Tile locations:
DIII-D: lower divertor (Figure 2a)

JET: Mark | divertor (Figure 2b)

XPS surface analysis:
shows the presence of Ni on the surface

DIII-D: Ni fraction < 1% prior to oxidation
(~ 9% after oxidation)

JET: Nifraction < 1% after oxidation
(no data available for specimens prior to oxidation)
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Experiment

Experimental apparatus (See Figure 3)

e Baking to 620 K (350°C)
e O, pressure to 1 atm

Procedure

e The oxidation chamber, with the specimen, is baked to the
desired test temperature

e After the desired oxidation time, the remaining D content in the
specimen is measured using laser-induced TDS

e RGA detection of desorption products (D,, H, and HD)
e Absolute calibration of RGA using a D, leak bottle
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Results

(a) D removal and erosion rates

As function of O, exposure time for a fixed pressure of

2.1 kPa (16 Torr) and 3 temperatures

e DIII-D: (Figure 4a)

e JET: (Figure 4b)
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5 Erosion of JET co-

depOS|t at 2.1 kPa.
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(a) D removal and erosion rates (cont'd)

As function of O, exposure time for a fixed temperature of

623 K and 3 pressures

e DIII-D: (Figure 5a)

e JET: (Figure 5b)
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Erosion of JET co-deposit at 623 K.
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(b) Initial D removal and erosion rates

As function of O, pressure at 3 temperatures:

e DIII-D: (Figure 6a)

o JET: (Figure 6b)
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Erosion rates for JET co-deposits.
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(C) Final D content after oxidation

As function of O, pressure at 3 temperatures:

e DII-D:  (Figure 7a)

o JET: (Figure 7b)
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(d)  Effect of surface impurities on D removal

e Surface analysis (XPS) of Specimens used in the present study
shows the presence of Ni on the surface

DIII-D: Ni < 1% prior to oxidation and ~ 9% after oxidation
JET: Ni< 1% after oxidation (no prior-oxidation data)

Not enough information to assess effect of Ni content on the
final D content after oxidation (Figures 7a and 7b)

e Previous study with W impurity on lab film (Davis et al/JNM/2002)

Controlled deposition of sputtered W on lab-produced film

W inhibits oxidation (Figure 8)
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Conclusion
The initial D removal rate during oxidation:

e Strongly depends on temperature — rate increases with
Increasing temperature

e Has a weak dependence on oxygen pressure — especially
at 623 K (not much difference between 2.1 Pa and 21 Pa)

The final D content after oxidation:

e Strongly depends on temperature — D content decreases
with increasing temperature

e Also has a strong dependence on oxygen pressure —
especially at 623 K (a factor of 4-10 decrease as the
pressure goes from 0.21 Pa to 21 Pa)
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Implication for ITER

Based on the C erosion rates measured in lab experiments for
tokamak codeposits, if a reactor could be heated to approximately

620 K (350°C) during oxidation, then T-containing codeposits of ~

30 um thickness could be eroded within ten hours.
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Outstanding Issues for Lab Studies

e Systematic characterization of co-deposits (structure,
composition) before and after oxidation

e Reaction product detection during oxidation (correlation of D and
C in the reaction products and the codeposits)

e Study of temperature and O, pressure dependence of codeposit
erosion from several locations in tokamaks

e Study of the observed levelling-off of D removal from codeposits
during lab oxidation at fixed O, pressures

e Effect of impurities within codeposits on oxidation rates

e Collateral damage of in-vessel reactor materials
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