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Multiresolution chemistry objectives
• Complete elimination of the basis error

– One-electron models (e.g., HF, DFT)
– Pair models (e.g., MP2, CCSD, …)

• Correct scaling of cost with system size
• General approach

– Readily accessible by students and researchers
– Higher level of composition 
– No two-electron integrals – replaced by fast 

application of integral operators
• New computational approaches 
• Fast algorithms with guaranteed precision
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Essential techniques for fast 
computation
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• Low-operator 
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How to “think” multiresolution
• Consider a ladder of function spaces

– E.g., increasing quality atomic basis sets, or finer 
resolution grids, …

• Telescoping series

– Instead of using the most accurate representation, use 
the difference between successive approximations

– Representation on V0 small/dense; differences sparse
– Computationally efficient; possible insights

0 1 2 nV V V V⊂ ⊂ ⊂ ⊂!

0 1 0 2 1 1( ) ( ) ( )n n nV V V V V V V V −= + − + − + + −!
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Scaling Function Basis
• Divide domain into 2n pieces (level n)

– Adaptive sub-division (local refinement)
– lth sub-interval [l*2-n,(l+1)*2-n] l=0,…,n-1

• In each sub-interval define a polynomial basis
– First k Legendre polynomials
– Orthonormal, disjoint support φ φ/ 2
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Scaling Function Basis - III
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Multiwavelet Basis
• An orthonormal basis to span
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Vanishing moments
• Critically important property

– Since Wn is orthogonal to Vn the first k
moments of functions in Wn vanish, i.e., 

• Compact representation of smooth functions
– Consider Taylor series … the first k terms vanish and 

smooth implies higher order terms are small
• Compact representation of integral operators

– E.g., 1/|r-s| … interaction decays as r-2k-1

• Derivatives vanish at origin in Fourier space
– Diminishes effect of singularities at that point

 ( ) 0,  0, , 1j
ix x dx j kψ = = −∫ …
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Truncation Error
• To satisfy the global 

error condition

• Truncate according to

• Above is rather 
conservative – often use

• For accurate function 
& derivative 
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1-D example
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scaling function basis

Refinement tree in the
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Integral Formulation
• Solving the integral equation

– Eliminates the derivative operator and related “issues”
– Converges as fixed point iteration with no preconditioner

( )
( )

( )

( )

21
2

12

2

2 2

2 *

* ( ) ( )  in 3D ; 2
4

k r s

V E

E V

G V

eG f r ds f s k E
r sπ

−

− −

− ∇ + Ψ = Ψ

Ψ = − −∇ − Ψ

= − Ψ

= = −
−∫



17

Separated form for integral operators

• Approach in current prototype code
– Represent the kernel over a finite range as a sum of Gaussians

– Only need compute 1D transition matrices (X,Y,Z)
– SVD the 1-D operators (low rank away from singularity)
– Apply most efficient choice of low/full rank 1-D operator
– Even better algorithms not yet implemented

2

', ', ' ' ' ' ( )   in  3D

( ) ( )

yx z

i

nlnl nlnl
ii jj kk i ii ii ii

i

t r
i

i

r X Y Z O

K r e O

ω ε

ω ε−

= +

= +

∑

∑

* ( ) ( )T f dsK r s f s= −∫



18

Automatically generated 
representations of
exp(-30r)/r accurate to 
1e-10, 1e-8, 1e-6, 1e-4, 1e-2 
(relative error) for r in 
[1e-8,1] (92, 74, 57, 39 and 
21 terms, respectively).  

Low-energy scattering
states also possible (but 
stronger dependence on 
range)

Periodic systems (cubic 
subgroups) straightforward.
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Water dimer LDA
aug-cc-pVTZ geometry, kcal/mol.

-6.483ε=10-3

-7.943ε=10-7

-7.932ε=10-5

-7.941-0.054-7.995aug-cc-pVQZ

-7.906-0.086-7.992aug-cc-pVTZ

-7.805-0.382-8.187aug-cc-pVDZ

-7.888-0.821-8.708cc-pVQZ

-7.810-1.654-9.464cc-pVTZ

-7.775-3.958-11.733cc-pVDZ

CorrectedBSSEUncorrectedBasis
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LDA scaling with Z and system size (energy ε=10-5)

0

50

100

150

200

1 2 3

time/min

22.55*n^1.86

6.1*n+17.3*n^2

0

500

1000

1500

2000

0 10 20 30 40

time/s
7.2*Z^1.5
20.506*Z+0.6334*Z^2

Rare earth atoms Z=4,12,20,38 (C6H6)n MP2 aug-cc-pvTZ geometry

(H2O)n n=5,9 … t = O(n1.1)

Stacked benzene – MOs are delocalized by symmetry 
Water cluster – MOs are asymptotically localized 

(long tail is smooth so is inexpensively treated)
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Current Capabilities
• Open/closed shell Hartree-Fock and DFT

– Wide range of GGAs, hybrid (O(N) HF exchange), 
and AC functionals

– Energies and analytic derivatives
– Full TDDFT and RPA for excitation energies  *****
– Abelian point groups
– Parallel execution on shared memory computers 
– Interfaces to NWChem and GAMESS-US

• Several prototypes for computing in 6D
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High-level composition using 
functions and operators

• Conventional quant. chem. uses explicitly 
indexed sparse arrays of matrix elements
– Complex, tedious and error prone

• Python classes for Function and Operator
– in 1,2,3,6 and general dimensions
– wide range of operations 
Hpsi = -0.5*Delsq*psi+ V*psi
J = Coulomb.apply(rho)

• All with guaranteed speed and precision
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New solver being developed
• Working with localized orbitals

– O(1) application of operators to one orbital
– O(N) computation of Coulomb potential (already)
– O(N) computation of Fock-like matrices
– More robust convergence 

• Current code suffers from convergence problem due to 
poorly defined resolution of nearly degenerate orbitals

• Near total rewrite in C++ 
– Two-levels of parallelism targeting massively 

parallel computer using multi-processor nodes
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Electron correlation
• All defects in the mean-field model are ascribed to 

electron correlation
• Consideration of singularities in the Hamiltonian 

imply that for a two-electron singlet atom (e.g., He)

• Include the inter-electron distance in the 
wavefunction
– E.g., Hylleraas 1938 wavefunction for He

– Potentially very accurate, but not systematically 
improvable, and (until recently) not computationally 
feasible for many-electron systems

21
1 2 12 12 12 122( , , ) 1 ( )   as   0r r r r O r rΨ = + + →

1 2( )
1 2 12 12( , , ) (1 )r rr r r e arς− +Ψ = + +!
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r12
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Conventional approach
• The two-electron wave function is expanded as a 

product of one-particle functions (orbitals)

• Can prove for atoms, that if saturate the atomic basis 
up to some angular momentum L, then

• Correlation consistent basis sets (Dunning) are 
currently the best choice – cost is 

• Explicitly correlated wave functions yields
• Fully numerical promises  

1 2 1 2( , ) ( ) ( )ij i j
ij

r r c r rφ φΨ =∑

( ) 31corrE L −∆ ∝ + 0.00460.0080.0160.04(L+1)-3

hgfdL

4( )O ε −

2.4( )O ε −

1(log )O ε −
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Multiresolution solver of two-electron 
Schrödinger equation

• Wavefunction in 6-D multiresolution representation 
• Solve integral equation

– The 6D GF nominally has 12 indices!  Separated 
representation of operator accurate and efficient

• Partly or fully use SVD to represent 6-D tensor 
coefficient sets
– Blocks separated from the diagonal have low rank (1 or 2, 

the full rank being k3) 
– Directly analogous to linear CI expansion but not global

• Can compute directly in this form, but other 
refinements make it much more practical
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Analytic removal of cusp(s)
• Two-electron 

Hamiltonian
• Two-electron 

wavefunction
• Transformed 

problem

• Choose u to eliminate singularity at r12=0
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Smoothed potential and wave function
• Similarity-transformed Hamiltonian with correlation 

factor (cf. transcorrelated Hamiltonian)
– The effective wavefuntion Φ as well as the transformed 

Hamiltonian is smoothed at r12=0

– Electron-electron repulsion is smoothed 
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Smoothed interelectron potential
• Correlation factor

– Jastrow

– Exponential

– Linear
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Solve for the correlation correction 
to the HF wavefunction

• The smoothed wavefunction is separated 
into Hartree-Fock wavefunction and its 
perturbation. 
– The perturbative wavefunction is numerically 

smaller than Hartree-Fock wavefunction. 
( ) ( ) ( )1 2 1 2 1 2, , ,HFr r r r r rδΦ = Φ + Φ

( )1 2 2
, 1.0HF r rΦ =

( )1 2 2
, 0.1r rδ Φ ≈ For He atom
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Preliminary 
results

for He atom 

0.000 28-0.000 04-2.903 7714
+0.000 004
-0.000 04

…
-0.000 20
-0.000 32
-0.000 70
-0.001 75
-0.005 51
-0.023 84

∆E residualVariational E

0.000 32-2.903 7313
0.000 36-2.903 7312

………
0.000 91-2.903 396

0.002 02-2.902 884

0.007 94-2.900 432
0.017 28-2.894 921
0.414 73-2.871 08Iter. 0

0.001 25-2.903 205

0.003 84-2.902 183

-2.861 61HF

Computational details:

- 5-th order multiwavelets
- Wavelet threshold:   2×10-5

- SVD threshold:  2×10-6

- Exponential correlation factor
Perturbative wavefunction:

- Maximum refinement: n=4

-Memory:  132M in full SVD 
form

-Energy is variational
(small non-variational is 
just truncation err)

-2.903 48 (FCI)  (E(HF)= -2.861 67)cc-pV6Z

-2.903 74  (E(HF)=-2.861 68)exact

-2.895 4Löwdin and Redei
-2.903 24Hylleraas (6 terms)
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Coulomb hole (He)
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Summary
• Multiresolution analysis provides a general 

framework for computational chemistry
– Accurate and efficient with high-level composition
– Multiwavelets provide high-order convergence and 

readily accommodate singularities/boundary conditions
– General framework readily accessible to researchers
– Real impact will be application to many-body models

• Separated form for operators and functions
– Critical for efficient computation in higher dimension

• Precision is guaranteed
– Excited states, non-linear response, … 
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