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Charge

< Laboratory astrophysics review covering low energy
collisions of atoms w/ atomic ions and of electrons and
atomic 1ons for current/future NASA missions

< Cover current theoretical and experimental laboratory
astrophysics work and capabilities

< Needs to meet current and future NASA astrophysics
mISSIoNS
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Outline

< Considered processes for lowly-charged systems (g<95):
< Electron Capture (charge exchange)
< Electron-impact electronic excitation
< Electron-impact fine-structure excitation

< Atom-impact excitation (electronic and fine-structure)
< Applications to “/ow" temperature environments

< Survey of 2006-2010 relevant literature, researcher
queries, and IAU Reports in Astronomy, Collisional
Processes




Electron Capture (CX)

iy Collision of an ion X of charge g with a neutral Y (Y = H,

He, or H2) X9t LYy - XD+ L y+

< For photoionized gas or cool environments, plays
Important roles in the:

< lonization balance (species abundances)
< Thermal balance (Kingdon & Ferland 1998)
< Emission Spectra

< Rate coefficients (and cross sections) available on some
websites, but not comprehensive: UMIST, ORNL-UGA




Electron Capture: Methods

ﬁEx eriment (total
- Flowing afterglow
< lon beam-gas cell
< lon trap

< Merged-beams
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(state-resolved)

Trans. energy
spectroscopy

Photon
Spectroscopy
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< Theory

< Landau-Zener

< Molecular-orbital
close-coupling (cc)

< Atomic-orbital CC
< Lattice methods
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Electron Capture: Highlights
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MOCC calculations
(Barragan et al. 20006)
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merged-beams
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(Bruhns et al. 2008)
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Electron Capture: Needs
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- SH*: IR diagnostic in XDRs | = n-capture elements are

< Surprising Fe | features in observed in PNe

IVig II'absorbers = Abundance depends on
: More Fe |, than in models branching ratio 2 O daia arg sonpleiely

S2+ + Hy S + Hot lacking
=>SH* + H* < Needed for g=1-5

& 4 | (
Fe + H*, Mg + H* SH™ in X-ray Se, Kr, Xe, ... + H
Damped Lyman o Dominated Regions Trans-lron Elements in
Clouds (z~0.45) (Abel, Federman, Planetary Nebulae
(Jones et al. 2010) PCS 2008) (Sterling et al. 2007)

- Fe + H* CX rate too large
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Electron Impact Electronic
Excitation

< Collision of an'ion X of charge g (or a neutral) with an

electron X9 (nlSL) +e~ — X (n'I'S'L') + e~

< Important in a variety of environments including

collisionally-lonized and photoionized gas:

< Level populations (non-LTE emission spectra)

< Electron density diagnostic

< Temperature diagnostic (Osterbrock & Ferland 20006)
< Elemental abundances

< Rate coefficients (and collision strengths) available on

some websites, but not comprehensive: Cloudy, ORNL



Electron-Impact Electronic
Excitation: Methods

( 4
< Theo

< Experiment S HCOLY _

< Perturbative

< Merged electron- ) _
ion beam energy - R-matrix close-

loss (JPL & ORNL) PR coupling (various
flavors)
S EBIT

< LLattice methods




Electron Impact: Highlights
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S°" measurements . :
Wallbank et al. (2007) Fe** R-matrix calculations O(2p*,3s,3p) R-matrix

Simcic et al. (2010) (Ballance et al. 2008) calculations
(Barklem 2006)




Electron Impact: Needs

(A: AUTO, T: DARC)

Upper level index

Bautista et al. 2010

< Combined atomic data/modeling study
of Fe Il in the Orion Nebula

< New Dirac-Fock A-values
< New Dirac R-matrix collision strengths

< Dramatic improvement over previous
atomic data

& Sterling et al. (2010)

< To model planetary emission lines of n-
capture elements, collision strengths are
needed for many ions

: Sel2t Seddt Krt, Krét, Xet Xed*,
Brat, Rba*, ...




Fine-Structure Excitation

< Collision of an ion X of charge q (or a neutral) with an
electronor Hatom X (nlLJ)+Y — X(nlLJ')+Y

- Important in a variety of cool and molecular
environments:

< Level populations (non-LTE emission spectra)

< Radiative cooling

< Temperature, density, radiation diagnostics

< Many lines observable by Spitzer, SOFIA, Herschel
< No comprehensive data compilation




Fine-structure excitation:
Highlights
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< |Larger by factors of 2-4
compared to previous
calculations
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Calculations calculations calculations
Abrahamsson et al. (2007) Tayal (2008) Tayal (2008)




Fine-structure excitation:
Needs

Ne II 12.81 um emissivity

< [Nelll] and [Nell] lines
observed in protoplanetary
disks with Spitzer

< H collisional rates needed

[Nelll[Nell]

< [Nelll}/[Nell] ratio used as a
diagnostic of AGNs

< Usually only e-collisions

considered

o

Ne*+ H, Ne?* + H
protoplanetary disks
(Meijerink et al. 2007)

e

Ne*+H,Ho,
Ne?* + H,H2 in XDRs
(Abel 2008)

ST 25.25 um emissivity

= [Sl] observed in proto-
planetary disks

< H collisional rates needed

@

S+ H
protoplanetary disks
(Meijerink et al. 2007)




Electronic excitation:
Highlights
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Na | was the first detected
atomic feature in an
extrasolar planet

Barman et al. (2002)
suggest Na is in non-LTE
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Summary - Needs

(

- Electron capture (charge transfer):

< State-selective’low-E measurements

< Imprevementsiin molecular energies for MOCC calcs.

< lLattice-methods - 2-electron (6DD), lower-energy

< Measurements/calculations of n-capture elements (g=1-5)

< H=with ' Srd and 4th row elements (Fe, Mg, Se, ...)

< Selections (g=<9) up to Zn only have LLandau-Zener rates
< Electron impact electronic excitation:

< n-capture elements (g=1-5)



Summary - Needs

< Fine-structure excitation:
< Mleasurements are generally lacking
< @alculations for S, S, Ne*, Ne?* due H (He)
< Calculations for: Ne™ and Ne=* due to H>
< Improvements for select electron collisions
< Electronic excitation by neutral collisions:
< Measurements are generally lacking
< Na due Hz; K, Rb by H>, He, and H, ....
< Compilations
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