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Condensed volatiles (“ices”) are present in many
Astrophysical Environments

Comets

Comet Hale-Bopp,
as seen in 1996
H,O, CO, NH,, ...

Icy Moons

Oberon,
moon of Uranus,
N,, CH,, ...

Dense Interstellar
Clouds

M16- Eagle Nebula
H,O, CO, CO,, ...



Spectroscopy of dense interstellar clouds

absorption features due to molecules in the
solid phase at low T (10-50 K)

+. Elias 16 (field star)

=
=
2]
=
[}
0
>
5
L

NH,?

NGC 7538 IRS9 (protostar)

(adapted from Whittet et al. 1996, 1998)
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Infrared reflectance spectrum of Triton
N,, CO, CO,, CH,, T=40K

Cruikshank et al. (1993)




How can laboratory work shed light on these
environments?

Identifications of solid-phase absorption features
based on comparisons to laboratory data

H,O + CO (10:1), T=18K
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Detailed laboratory fits to ice spectra

Information about ice composition, temperature,
structure, and chemical environment
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Gerakines et al. (1999)



Simulations of physical and chemical
processes...

Accretion
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Chemical
reaction




... lead to predictions about ice chemistry
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Interstellar/Planetary Ice Laboratory at UAB




Cosmic Ice Laboratory at NASA/GSFC
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Deposition Tube

UV Lamp

0.8 MeV
Protons

Al Mirrar

CO, Other
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Spectrum of UV Photolysis Lamp at
NASA/GSFC and UAB
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Forms of Ice Processing in Space

UV Photons

break bonds

ionize species

penetration
limited by
optical depth
(~ 0.2 umj

Cosmic Rays
(protons)

break bonds

ionize species

generate high-energy
secondary elecirons

penetration limited by
energy of particle
and stopping power
of ice (~ 20 um)
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Carbonic Acid Formation from H,O + CO, Ice
(Relevant to ISM, Icy Moons)
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Product formation rates in H,O + CO, (1:1) Ice

H,0 + CO, (1:1), 18 K

CO:
G=0.25 molec / 100eV

=

H,COj:
G=0.03 molec / 100eV
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Mid-IR spectrum of carbon suboxide (C;0,) at 18K
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Gerakines & Moore (2001)
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Carbon suboxide (C;0,) formation in
CO-containing ices

irradiation
after 7.9x10" ey em™®
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photolysis
after 5.0x10" eV cm™

CO+C,0, (100:1) deposit at 18K
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Gerakines & Moore (2001)
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Suboxide production rates for CO processing at 18 K

Large differences in
formation rates,
dependent on form
of energy

C;0.: E]
G =0.24 z
(irradiation) S
S
G=0.014 : "
(photolysis) 8 ~A-co

Photolysis
—Hl—-CQO,
—@—C.0,

Energy dose [10"" eV cm™]

Gerakines & Moore (2001)
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Could C;0, be found in the ISM?

1.3x10-16 cm/molec

protostar W33A

< 0.05 % of H,O

protostar NGC7V538 IRS9
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H,O + C,0, (10:1) 18K

CO +C,0, (100:1) 18K
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Gerakines & Moore (2001)
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Studies of Ice Overtone Features in Near-IR
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Studies of Ice Overtone Features in Near-IR

Results for CO

£
2,
@
| -
=
e
1]
@
L
Q
0
—
o
o
@D
| =
<

0.0 0.5 1.0 1.5 2.0 25

Area of *CO Feature at 2092 cm™' [cm ]

20



Absorbance

Results for CO,

Wavelength [um]
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Results for H,O
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Absorbance

Area of CH,OH Feature [cm"1]
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Absorbance

Wavelength [pum]
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Studies of Ice Overtone Features in Near-IR

Peak Position
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Investigating the Origins of Interstellar CO, with
the Spitzer Space Telescope

Embedd ed
Source

Molecular Cloud
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Models predict that ice mantles contain at least
two distinct phases with different volatilities
(and hence different extinction thresholds)

Core H,O-dominated CO-dominated
mantle mantle
O—»>OH—> H,0
2 COyas = COye

An intermediate phase?
4H+CO— CH;0OH?
O+ CO — CO,?

27
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Why is the CO, bending mode important?

14.5

15.0 15.5

Wavelength [um]

16.0

ISO-SWS data and fits from Gerakines
et al. (1999). Fits use lab data for ice
mixtures with temperature increasing
from top to bottom.

 The narrow sub features are
temperature-sensitive

* CO, and CH;OH may form linked
complexes that produce a long-
wavelength shoulder
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Laboratory Fit to Elias 16 CO, Bending Mode

o Elias 16 spectrum
—— Sum of Lab Components
—— CO+CO02 (100:26), 10K
— H20+CO02 (100:14), 10K
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Bergin et al. (2005, submitted)




Systematic study of CO, bending mode

Tahle 2. Proposed list of 47 1ce compositions—combinations of H,O, CH;0H, and CO;—to
be systematically studied in this research program.

Mixture Compositions to be studied
CH;O0H + COy (01,05,1,15,2,5,10):1

H,0 + CO; (1,2, 5,10, 100) - 1

H,0 + CH;0H + CQO, (1.2.5,10,100)
:(0.1,05.1.1.5.2.5.10)
|

Table 3. Thermal history experiments to be studied in the research program. The ices listed

will be annealed at durations from 30s to 1h at each temperature listed. Annealing

temperatures were chosen based upon the temperatures at which ices showed segregation in

Ehrenfreund et al. (1999).

Mixture Compositions Annealing Temperatures (K)

CH;0H + CO, (0.1,1,10):1 50, 75,90, 100, 110, 115, 120,
125,130, 150

H,0 +CO, (1. 10):1 50,7590, 100, 110, 115, 120,
125, 130, 150
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H,0 + CH;0H + CO, (1, 10, 100) - 50, 75 90, 100, 110, 115, 120,
(0.1,1,10):1 125, 130, 150

Wavelength [um] H,0 + CH;0H + CH, + CO, 10:1:1:1 50, 75, 90, 100, 110, 115, 120,
125, 130, 150

H,0+CH;0H +NH; + CO, 10:1:1:1 50, 75, 90, 100, 110, 115, 120,
125, 130, 150




Results of SST study so far

* CO, displays a threshold extinction in Taurus similar to
that of H,O — it will be important to confirm and
compare other clouds

* The CO, profile is well matched by a combination of
polar (H,O-dominated) and non-polar (CO-dominated)
Ice components at 10 K

* There is no evidence for thermal or photolytic
processing of ices within the dark cloud

31



Photolysis of Planetary Ices

Why?
Overtone features are intrinsically weak

Thick ices difficult to photolyze effectively

Quirico et al. (1999) 32



Closed Cell for Photolysis of Planetary Ices

Side view
Cross-Sectional View Internal View (facing UV Window)

4
’é,

N
|

I

|

I

I

il
';".'

m

33



Collaborators:

Marla Moore (NASA/GSFC)
Reggie Hudson (Eckerd College)
Thomas Wdowiak (UAB)

Doug Whittet (Rensselaer)

UAB Students (Grad, Undergrad, REU):

David Alvarez Kyle Harman
Jennifer Bray Christina Richey
Vernon Chaplin Erik Saperstein
Amanda M. Cook Doug White

Birmingham Area High School Students:
Chris Cox Ben Retan
Alandra Davis Raven Underwood
Ralph Pippen

34



	Laboratory Studiesof Astrophysical Icesin the Near- and Mid-Infrared
	Infrared reflectance spectrum of TritonN2, CO, CO2, CH4, T=40K
	Why is the CO2 bending mode important?
	Results of SST study so far

